Выдающиеся русские первооткрыватели, инженеры и изобретатели — ч.1. Ученые. Биографии русских ученых

(1885-1962)
Физик, лауреат Нобелевской премии за 1922 год
В МИКРОМИРЕ ИНЫЕ ЗАКОНЫ

Нильс Бор родился 7 ноября 1885 года в семье известного датского физиолога. Еще ребенком, наблюдая за многочисленными физическими экспериментами, проводимыми отцом, Нильс увлекся естественными науками. С 1903 по 1908 год Нильс Бор учится в Копенгагенском университете. Выдающиеся способности юноши замечены преподавателями, так что вскоре Нильс становится помощником ассистента на кафедре физики. В 1911 году молодой ученый защищает докторскую диссертацию, посвященную электронной теории металла. Уже в этой ранней работе Нильса Бора содержится вывод о том, что представления классической физики недостаточны для объяснения электронных и атомных процессов, как и явлений электромагнитного излучения.

После защиты диссертации Нильс Бор едет на стажировку в Англию, где работает сначала в Кембриджском университете, а затем Манчестере - в лаборатории Эрнеста Резерфорда, к тому времени уже знаменитого физика. Именно в те годы Резерфорд экспериментально доказал, что внутри атома находится некое массивное тело. Экспериментатор назвал его «ядром». В опубликованной в 1912 году статье «Рассеяние альфа- и бета-частиц в веществе и структура атома» Резерфорд уподобил атом миниатюрной солнечной системе, в которой вокруг положительно заряженной «звезды»-ядра вращаются отрицательно заряженные «планеты» - электроны.

Поначалу ядерно-электронная модель атома не была принята всерьез научным миром. Ведь она шла вразрез с классическими канонами физики! Однако двадцатипятилетний Нильс Бор сразу поверил в атомную модель Резерфорда. Он понял, что исходя из этой «химерической» планетарной системы можно построить новую физику. Впоследствие она получила название «квантовая физика атома». Вот что писал Нильс Бор в своих Мемуарах: «Весной 1912 года я пришел к убеждению, что электронное строение атома Резерфорда управляется с помощью кванта действия». Рассуждал он примерно так: атом ничтожно мал, его диаметр не превышает стомиллионной доли сантиметра. При этом его частипы обладают электрическими зарядами строго определенной величины, а также определенной массой. Как, исходя из этих данных, «вывести» размер атома? Массы и заряды не позволяют получить величину, имеющую размерность длины. Значит, либо должны существовать некие, доселе неизвестные силы, действующие на расстояниях, соизмеримых с атомным радиусом, либо в расчеты должны быть введены некие константы, которые позволят вместе с зарядом и массой получить величину размерности длины. Такой константой могла стать только постоянная Планка.

1913 год. Именно в том году он опубликовал три фундаментальные работы, введя в науку свои знаменитые квантовые постулаты, определявшие строение атома, а также испускания и поглощения им электромагнитного излучения. На примере атома водорода ученый констатировал, что излучение электрона, который движется вокруг ядра, не представляет собой непрерывного спектра, а значит, не может быть описано законами классической электродинамики, согласно которым электроны вследствие своего ускорения должны были бы постепенно терять энергию и в конце концов упасть на ядро. Чтобы устранить возникшее противоречие, Бор предложил опереться на данные эксперимента, а не на классические постулаты, абсолютно бессильные, коль скоро речь заходит о столь малых заряженных объектах. Он выдвинул свои постулаты, в основе которых лежала, как уже говорилось, квантовая теория Макса Планка.

В соответствие с постулатами Бора, электрон в свободном атоме водорода вращается вокруг ядра не по произвольной орбите, а по такой траектории, прохождение которой не связано с излучением энергии. Образование линейчатого спектра, непонятного с точки зрения классической физики, объяснялось тем, что электрон, поглощая фотон, переходит на более высокую орбиту. Соответственно, при потере энергии, электрон переходит на более низкую орбиту.

Теория объясняла также потерю атомом электронов при образовании положительных ионов. Основные постулаты теории Бора были изложены в статье «О строении атомов и молекул», опубликованной 5 апреля 1913 года. Согласно этой теории:

а) электроны могут перемещаться только по строго определенным орбитам. Чем дальше находится электрон от ядра, тем слабее притяжение,
которое он испытывает, и тем проще его вырвать из атома;

б) при перемещении по одной и той же орбите электрон не излучает энергии;

в) при перескакивании с одной орбиты на другую электрон поглощает или излучает энергию: при переходе с более близкой на более дольнюю
орбиту - поглощает, так как при этом он преодолевает силу притяжения ядра, в случае обратного перехода - излучает.

Переход с одной орбиты на другую соответствует излучениям со строго определенными частотами, которые вычисляются с помощью постоянной Планка. Фотоны переносят энергию не непрерывно, а в виде квантов. Каждое тело, которому сообщается энергия (например, при нагреве), возвращает ее затем в виде излучения со строго определенной частотой, специфичной для данного вещества. Теория Бора стала подлинной революцией в физике. Она показала, что в микромире действуют законы, абсолютно непохожие на те, которыми описывается мир макрообъектов. Однако достаточно стройная модель атома Резерфорда-Бора не лишена была противоречий. Ведь новое представление о стационарных электронных орбитах опиралось на теорию Планка, тогда как расчет этих «планетарных» орбит производился по методам классической механики. Физик Генри Брэгг иронизировал на сей счет: «Мы как бы должны по понедельникам, средам и пятницам пользоваться классическими законами, а по вторникам, четвергам и субботам - квантовыми». Со временем наука пришла к выводу, что резерфордовско-боровская модель атома - лишь удобное приближение, тогда как реальный атом намного сложнее. Однако постулаты Бора не только устояли, но и легли в основу современной теоретической физики.

В 1920 году Нильс Бор становится во главе созданного им Института теоретической физики в Копенгагене, в 20-30-е годы по праву считающегося международным центром науки. Здесь ученый продолжает работу по изучению строения атома и атомного ядра. На заседании Физического общества 18 октября 1921 года он выступает с докладом «Строение атома и физические и химические свойства элементов», в котором объясняет глубинные причины периодического изменения свойств элементов. Бор связывает Периодическую систему Д. Менделеева с изменениями в строении электронных оболочек элементов. Вот как это формулируется в докладе: «Последовательность элементов распадается на различные периоды, внутри которых их химические свойства изменяются известным характерным образом. Для истолкования этой закономерности естественно предположить отчетливое распределение электронов в атоме таким образом, что расположение групп элементов в системе следует приписать постепенному образованию электронных групп в атоме по мере увеличения атомного ядра». Плодотворность предложенного датским физиком подхода вскоре была доказана фактом открытия гафния. Бор предположил, что неизвестный элемент с порядковым номером 72, хотя он и расположен в Периодической системе рядом с лантаноидами, может быть обнаружен не среди них, а вблизи циркония. Это предположение он сделал на основании того, что ряд лантаноидов заканчивается на элементе 71, электронная оболочка которого содержит максимальное число электронов - то есть полностью заполнена, из чего следует, что элемент с порядковым номером 72 относится уже к другой группе. В 1922 году Нильсу Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атомов и испускаемого ими излучения»: В своей нобелевской лекции Бор сообщил о том, что двое его сотрудников обнаружили элемент с порядковым номером 72 именно в циркониевых минералах. Так блестяще подтвердилось предсказание великого ученого. В 30-е годы областью научных интересов датского естествоиспытателя становится ядерная физика. В 1936 году он предлагает свой механизм протекания ядерных реакций, согласно которому бомбардирующая частица и ядро «простреленного» атома образуют составное ядро, в котором мгновенно перераспределяется энергия. Через ничтожно малый промежуток времени один или несколько нуклонов приобретают энергию, достаточную для того, чтобы покинуть ядро. В 1939 году Бор выдвигает капельную модель ядра. Совместно с Д. Уилером он разрабатывает количественную теорию деления урана под действием нейтронов и, благодаря своей блестящей научной интуиции, предсказывает вероятность спонтанного деления ядер.

Во время Второй мировой войны Данию оккупируют немецкие войска. Утром 29 сентября 1943 года Бор получает секретное сообщение о том, что фашисты собираются насильственно вывезти его в Германию, поскольку руководство «Третьего рейха» решило привлечь великого датчанина к реализации гитлеровского атомного проекта. Благодаря связям с движением Сопротивления, Бору и его жене удается в последнюю минуту ускользнуть от германских спецслужб. Под покровом ночи тайно они покидают родину на рыбацком судне и переправляются в Швецию. Оттуда они вскоре летят в Англию на переполненном бомбардировщике. Место для ученого нашлось только в бомбовом отсеке. Кислородный шлем оказался Бору слишком мал, и, пока самолет шел на большой высоте, физик едва не погиб от удушья. Кроме того, как впоследствии выяснилось, летчики имели приказ в «крайнем» случае открыть бомбометательный люк: ученый ни в коем случае не должен был попасть в руки врага. К счастью, все обошлось. Из Англии Бор перебирается в США, где принимает участие в работах по созданию атомной бомбы. Одним из первых великий датчанин понял, какая опасность таится в открытиях физиков-ядерщиков. В июле 1944 года он обратился к президенту США Ф. Рузвельту с меморандумом, в котором высказался за полное запрещение производства и применения атомного оружия. Сын Нильса Бора продолжил дело отца. В 1975 году Оге Бор получил Нобелевскую премию по физике «за развитие теории структуры атомного ядра».

Тим Бернерс-Ли

(р. 1955)
¶Создатель глобальной компьютерной сети
¶ВСЕМИРНЫЙ ПАУК

Он родился в Англии в семье с крепкими патриархальными традициями. Читать полностью »

(р. 1922)¶Физик, лауреат Нобелевской премии по физике за 1964 год
¶МАЗЕР И ЛАЗЕР

Среди его научных трудов есть посвященные оптическим свойствам полупроводников и сверхпроводимости,
молекулярной плазме и синхротронному излучению, космическим лучам, пульсирующим нейтронам и даже проблемам общей теории относительности. Читать полностью »

(р. 1908)¶Физик, лауреат Нобелевских премий за 1956 и 1972 гг.
¶В ПОИСКАХ ТРАНЗИСТОРНОГО ЭФФЕКТА

Будущий дважды Нобелевский лауреат родился 23 мая 1908 года в городе Мэдисон, штат Висконсин, в семье профессора анатомии. Читать полностью »

Лев Андреевич Арцимович

(1909-1973)¶Физик
¶ВСЕ ОТРИЦАЮЩИЙ ДУХ

Академик Арцимович родился 25 февраля 1909 года в Москве. Читать полностью

Николай Николаевич Андреев

(1880-1970)¶Физик¶
ЧИСТОТА ЗВУКА

Основоположник российской акустической школы родился 15 июля 1880 года. Читать полностью »

Луис Альварес

(1911-1988)¶Физик, лауреат Нобелевской премии за 1968 год¶
И САМОЛЕТЫ, И ДИНОЗАВРЫ

Луис Уолтер Альварес родился 13 июня 1911 года в Сан-Франциско в семье университетского профессора. Читать полностью »

Анатолий Петрович Александров

(1903-1994)¶Физик¶
ОТ КИЕВА ДО ЧЕРНОБЫЛЯ

Академик Александров прожил долгую, интересную жизнь. Его творческую судьбу можно было бы назвать счастливой, если бы не авария, случившаяся в 1986 году на Чернобыльской АЭС на созданном им реакторе. Читать полностью »

Макс Фон Лауэ

(1879-1960)
Физик, лауреат Нобелевской премии по физике за 1914 год
ЛУЧИ В ПЛЕНУ У КРИСТАЛЛА

Макс Теодор Феликс фон Лауэ родился 9 сентября 1879 года в Германии. Его отец в 1913 году получил потомственное дворянство и престижную приставку «фон» к фамилии. Читать полностью »

Лев Давидович Ландау

(1908-1968)
Физик, лауреат Нобелевской премии по физике за 1962 год
ВЕЛИКИЙ УПРОСТИТЕЛЬ

Его называли лучшим физиком-теоретиком своего времени, а главным его качеством коллеги считали умение предельно ясно показывать фундаментальную простоту, присущую основным явлениям природы. Читать полностью »

Мария Кюри-Склодовская

(1867-1934)
Физик, химик, лауреат Нобелевских премий за 1903 и 1911 годы
ДОБЫЧА РАДИЯ - ТА ЖЕ ПОЭЗИЯ

Одна из самых великих женщин и ученых всех времен и народов, Мария Склодовская родилась 7 ноября 1867 года в Варшаве. Читать полностью »

Пьер Кюри

(1859-1906)
Физик, лауреат Нобелевской премии за 1903 год
СВЕТ БУДУЩЕГО

Пьер Кюри родился 15 мая 1859 года. Его отец Эжен Кюри был врачом, причем хорошим, однако после разгрома Парижской коммуны, участником которой был, он не имел богатых пациентов, а потому нуждался. Читать полностью »

Игорь Васильевич Курчатов

(1903-1960)
Физик
ВОИНСТВЕННЫЙ ATOM

Выдающийся физик Игорь Курчатов родился 12 января 1903 года в небольшом поселке Сим неподалеку от Уфы. Отец его, по образованию землемер, был в то время помощником лесничего. Читать полностью »

Вильгельм Рентген

(1845-1923)
Физик, лауреат Нобелевской премии по физике за 1901 год
В СВЕТЕ ИКС-ЛУЧЕЙ

На фотопластинке проявляется контур изящной дамской руки с длинными пальцами. Снимок похож на негатив: отчетливо видны белые кости и более темные ткани вокруг них. Читать полностью »

Эрнест Резерфорд

(1871-1937)
Физик, лауреат Нобелевской премии по физике за 1908 год
ПЛАНЕТА ПО ИМЕНИ АТОМ

Эрнест Резерфорд родился 30 августа 1871 года в Новой Зеландии в семье шотландского переселенца. Отец Эрнеста был не только хозяином деревообрабатывающего предприятия, но и мастером на все руки. Читать полностью »

Александр Михайлович Прохоров

(р. 1916)
Физик, лауреат Нобелевской премии по физике за 1964 год
НА РАДИОВОЛНЕ

Русский ученый Александр Прохоров родился в Австралии. Туда забросила судьба его родителей, беглых ссыльных Михаила и Марию. Читать полностью »

Макс Планк

(1858-1947)
Физик, лауреат Нобелевской премии по физике за 1918 год
ЛЕГКИЕ ШАГИ ЭНЕРГИИ

Биографы Макса Карла Эрнста Людвига Планка утверждают, что великий физик состоял в родстве разной степени близости с философами Шеллингом и Гегелем, поэтами Шиллером и Гельдерлином. Читать полностью »

Вольфганг Паули

(1900-1958)
Физик, лауреат Нобелевской премии по физике за 1945 год
ЧЕЛОВЕК, КОТОРЫЙ НАЛАГАЛ ЗАПРЕТЫ

Биограф австро-швейцарского физика Вольфганга Эрнста Паули, автор книги «В поисках. Физики и квантовая теория» Барбара Клайн писала: «Внешне он очень напоминал Будду, но Будду, в глазах которого светился ум. В научных спорах Паули был бесподобен. Читать полностью »

Энрико Ферми

(1901-1954)

АТОМЫ У НЕГО ДОМА

Читать полностью »

Ричард Филлипс Фейнман

(1918-1988)

ВАЛЬС ЛЕТАЮЩИХ ТАРЕЛОК

Читать полностью »

Джозеф Джон Томсон

(1856-1940)

ОТЦЫ И ДЕТИ

Читать полностью »

Игорь Евгеньевич Тамм

(1895-1971)

«УРОВНИ ТАММА»

Он родился 8 июля 1895 года на самом краю России - во Владивостоке. Вскоре семья переехала на Украину, в Елисаветград (позже Кировоград), где отец Игоря Евгеньевича Читать полностью »

Энрико Ферми

(1901-1954)
Физик, лауреат Нобелевской премии по физике за 1938 год
АТОМЫ У НЕГО ДОМА

Как любой художник без запинки перечислит шедевры Рембрандта, так и рядовой физик с удовольствием расскажет о «шедеврах», автором которых является Энрико Ферми. Читать полностью »

Ричард Филлипс Фейнман

(1918-1988)
Физик, лауреат Нобелевской премии по физике за 1965 год
ВАЛЬС ЛЕТАЮЩИХ ТАРЕЛОК

Он умел заставлять время течь вспять, разделял изотопы урана, описывал сверхтекучий газ и вычислял силы, с которыми взаимодействуют элементарные частицы. Читать полностью »

Джозеф Джон Томсон

(1856-1940)
Физик, лауреат Нобелевской премии по физике за 1906 год
ОТЦЫ И ДЕТИ

Он подписывался Дж. Дж. Томсон, из-за чего коллеги дали ему прозвище Джи-Джи. Физику Джи-Джи выпало жить на водоразделе столетий. На склоне лет он так описывал начало своего пути: Читать полностью »

Игорь Евгеньевич Тамм

(1895-1971)
Физик, лауреат Нобелевской премии по физике за 1958 год
«УРОВНИ ТАММА»

Отечественные учёные внесли немалый вклад в развитие мировой медицины. Для настоящего краткого обзора авторы постарались отобрать десять наиболее важных открытий и достижений, ставших достоянием всего человечества.

Хирург Николай Пирогов. Худ. Илья Репин. 1881 год

Успехи естественных наук в XIX веке придали большой импульс развитию медицины. Впервые врачевание начало опираться на фундаментальные открытия в области природы человека, перестав быть малосистематизированным набором эмпирических знаний.

В десятке выдающихся открытий и достижений, о которых ниже пойдёт речь, два по праву принадлежат великому хирургу и анатому Николаю Пирогову , который прославился одновременно как создатель двух научных дисциплин: топографической анатомии и военно-полевой хирургии.

Таков масштаб этой уникальной личности!

Появление топографической анатомии стало ответом на запросы практических хирургов. В отличие от имеющей многовековую историю описательной анатомии в топографической нервы и сосуды изучаются таким образом, как они представляются выполняющему операцию хирургу.

Уже в своём первом труде «Хирургическая анатомия артериальных стволов и фасций» Н.И. Пирогов впервые установил важнейшие для практики законы взаимоотношения кровеносных сосудов, фасций и прилежащих тканей.

Гениальность идеи учёного состояла в разработке методики распила в различных плоскостях замороженного трупа, благодаря чему органы, сосуды и нервы сохраняли своё естественное, ненарушенное положение. Вскоре этот метод стал основным в изучении топографии человеческого тела. А в настоящее время подготовка врача просто немыслима без изучения сформировавшейся благодаря стараниям Н.И. Пирогова топографической анатомии.

В 1855 году Пирогов стал главным хирургом осаждённого Севастополя. Именно здесь он начал впервые в истории внедрять совершенно неизвестный ранее метод - сортировку раненых. Суть его заключалась в том, что уже на перевязочном пункте производилось, в зависимости от тяжести состояния, разделение пострадавших на различные группы.

Одни признавались безнадёжными, и попытки оказать им помощь в условиях дефицита медиков и времени, не изменяя неминуемого летального исхода, приводили только к резко возрастающим потерям среди тех, кого ещё можно было бы спасти.

Ведь в процессе ожидания помощи их состояние ухудшалось, и, пока пытались спасать тех, кто всё равно не выживет, среднетяжёлые погибали тоже. Таким образом, часть раненых признавалась безнадёжными, другая - подлежащими немедленной операции в полевых условиях, остальные, с более стабильным состоянием, эвакуировались в глубь страны для лечения в тыловых госпиталях.

В результате этой сортировки количество выживших повышалось, исходы улучшались. В дальнейшем благодаря деятельности Н.И. Пирогова сформировалась новая научная дисциплина - военно-полевая хирургия. Сейчас в сравнении с XIX веком в ней, а также тесно примыкающей медицине катастроф многое стало другим, но неизменными остались заложенные великим русским хирургом принципы сортировки.

Великий русский физиолог и патолог Илья Мечников считается основателем фагоцитарной теории иммунитета. Он доказал существование в организме особых клеток, способных поглощать патогенные микроорганизмы. Основные положения новой теории И.И. Мечников сформулировал в своей опубликованной в 1901 году работе «Невосприимчивость в инфекционных болезнях».

Илья Мечников

Мировое научное сообщество по достоинству оценило заслуги русского исследователя, присудив ему в 1908 году Нобелевскую премию. В приветственной речи говорилось, что И.И. Мечников «положил начало современным исследованиям по… иммунологии и оказал глубокое влияние на весь ход ее развития».

Несмотря на то что бо льшая часть его активной научной жизни проходила в стенах Пастеровского института в Париже, в ответ на официальный запрос Нобелевского комитета - является ли будущий лауреат русскими или французом - он с гордостью ответил, что «всегда был и продолжает быть русским».

Несколько раньше И.И. Мечникова, в 1904 году, Нобелевской премии в области медицины и физиологии удостоился другой великий русский учёный - Иван Павлов . И, хотя официальная формулировка гласила, что награда присуждена «за работу по физиологии пищеварения», проделанная работа позволила И.П. Павлову впервые сформулировать принципы высшей нервной деятельности - совокупности безусловных и условных рефлексов, а также высших психических функций, обеспечивающих адекватные поведенческие реакции животных и человека.

Иван Павлов

Их изучению он и посвятил последующие 35 лет своей жизни. Вряд ли можно найти другого русского учёного, получившего столь большую известность за рубежом: весь мир знает «павловских собачек». Английский писатель-фантаст Герберт Уэллс утверждал, что «это звезда, которая освещает мир, проливая свет на еще не изведанные пути».

Также в начале XX века, в ноябре 1905 года, в стенах Императорской военно-медицинской академии прозвучал доклад мало известного тогда широкой медицинской публике врача Николая Короткова , в котором впервые в мировой практике излагалась сущность аускультативного метода измерения артериального давления, ставшего в дальнейшем «золотым стандартом» в мировой медицине.

Николай Коротков

И в настоящее время врачебный осмотр немыслим без выслушивания «тонов Короткова» при измерении артериального давления. Несмотря на широкое распространение различных электронных тонометров, аускультативный метод Н.С. Короткова, согласно рекомендациям экспертов Всемирной организации здравоохранения, продолжает оставаться эталонным.

Российские врачи положили начало и системному изучению острого коронарного тромбоза. В 1904 году петербургский терапевт Владимир Керниг описал картину тяжёлых приступов стенокардии, обусловленных тромбозом коронарных артерий.

В 1908 году Василий Образцов и Николай Стражеско впервые детально описали клиническую картину острого инфаркта миокарда, выделив ангинозный статус, астматический статус и псевдогастралгию. Эти представления и сегодня не потеряли своей актуальности.

Василий Образцов

Следует отметить, что доклад русских врачей первоначально не вызвал большого интереса медицинского сообщества, так как в то время проблема инфаркта не представлялась актуальной. Однако по мере увеличения распространённости данной патологии начало расти и число ссылок на эту работу, а В.П. Образцов и Н.Д. Стражеско по праву стали рассматриваться как основоположники современного клинического учения об инфаркте миокарда.

Памятная медаль к 100-летию со дня рождения академика Николая Стражеско

Эстафету исследования сердечно-сосудистой патологии принял Николай Аничков , сформулировавший теорию патогенеза атеросклероза. Он впервые в мире доказал, что в основе лежит проникновение холестерина и его производных в стенку сосуда. Впервые атеросклероз предстал системным заболеванием, обусловленным различными, нередко сочетающимися между собой факторами риска. Открытие русского учёного блестяще подтвердилось на практике в ходе проведённого в 60-х годах XX века исследования MRFIT.

Николай Аничков

Обследовали 3,5 млн человек и установили, что повышение уровня холестерина в крови действительно в несколько раз увеличивает смертность от сердечно-сосудистых заболеваний. Немного позже доказали, что снижение уровня холестерина у больных атеросклерозом уменьшает риск смерти почти на треть. Вновь обратимся к зарубежным оценкам и в качестве иллюстрации приведём слова крупного американского биохимика Дениэла Стейнберга :

«Если бы истинное значение его находок было своевременно оценено, мы сэкономили бы более 30 лет усилий по улаживанию полемики о холестерине, а сам Аничков мог бы быть удостоен Нобелевской премии».

Современному человеку пересадка различных органов представляется во многом уже рутинной операцией. Однако нам не следует забывать, что у истоков трансплантологии стоял гений русского учёного-экспериментатора Владимира Демихова .

В 1937 году, ещё будучи студентом третьего курса, он сконструировал и вживил собаке искусственное сердце. После операции животное смогло прожить два часа. В 1946 году успешно пересадил собаке второе сердце, несколько позднее уже комплекс «сердце-лёгкие», что стало мировой сенсацией.

Владимир Демихов

Ещё через несколько лет он впервые заменил собаке собственное сердце на донорское и доказал принципиальную возможность проведения аналогичной операции у человека. И сенсация состоялась!

В 1967 году южноафриканский хирург Кристиан Барнард первым в мире осуществил пересадку сердца человеку. Он считал себя учеником В.П. Демихова и, прежде чем решиться на операцию, дважды приезжал к учителю за консультациями.

Также всему миру известен российский офтальмолог Святослав Фёдоров .

В 1973 году С.Н. Фёдоров впервые разработал и осуществил операцию по лечению глаукомы на ранних стадиях.

Святослав Фёдоров. Фото Игоря Зотина - ТАСС

Вскоре его метод стал применяться во всём мире, а в 1994 году на Международном конгрессе офтальмологов в Канаде его официально признали «выдающимся офтальмологом XX века».

Создание космической медицины следует относить к коллективному достижению отечественных учёных. Первые работы в этой области начались ещё в стенах научно-исследовательского санитарного института РККА под руководством Владимира Стрельцова .

Благодаря его стараниям удалось создать систему жизнеобеспечения для стратостатов «СССР-1» и «Осоавиахим-1». В 1949 году по инициативе министра обороны СССР Александра Василевского и конструктора Сергея Королёва появился Научно-исследовательский испытательный институт авиационной медицины, в котором в 1951 году началась исследовательская работа по теме «Физиолого-гигиеническое обоснование возможностей полета в особых условиях».

3 ноября 1957 года запустили второй искусственный спутник Земли с пассажиром на борту - собакой Лайкой. В ходе эксперимента производилась регистрация электрокардиограммы, артериального давления, частоты дыхания и двигательной активности.

Полученные данные подтвердили принципиальную возможность длительного нахождения живого организма на околоземной орбите и открыли путь к полёту человека. Первым в мире врачом-космонавтом стал Борис Егоров , совершивший 12 октября 1964 года полёт на космическом корабле «Восход-1».

Борис Егоров

В наше время в фокусе внимания космической медицины находятся проблемы обеспечения безопасности и оптимальных условий существования человека во время длительных космических полётов. Нас ждут новые открытия!

Андрей ЧАПЛЫГИН, кандидат медицинских наук, Ирина МЕТЕЛЕВА, кандидат медицинских наук

Наука в начале 20 века

НАУКА – сфера человеческой деятельности, включающая как выработку нового знания, так и ее результат – описание, объяснение и предсказание процессов и явлений действительности на основе открываемых ею законов. Система наук условно делится на естественные, общественные и технические.

В развитии науки чередуются экстенсивные и революционные периоды – научные революции, приводящие к изменению ее структуры, принципов познания, категорий и методов, а также форм ее организации.

В нач. 20 в. русская наука и техника дали в различных отраслях знаний ряд крупных имен и внесли важный вклад в сокровищницу мировой культуры. Русские ученые и изобретатели активно работали в области геологии, металлургии, переработки нефти, теории сопротивления материалов, почвоведения, электротехники, радиосвязи и на других важных направлениях научно-технической деятельности. Крупные успехи были достигнуты в математике, физике, механике.

В Петербурге вокруг великого русского математика и механика академика П. Л. Чебышева сложилась математическая школа. Профессор Московского Высшего технического училища H. Е. Жуковский открыл к этому времени метод вычисления подъемной силы крыла самолета, за что заслуженно получил звание «отца русской авиации». Более 30 лет возглавлял в Московском университете кафедру физики А. Г. Столетов. Им были успешно разработаны проблемы магнетизма и фотоэлектрических явлений. Эффективно вел свои исследования и физик П. Н. Лебедев.

На рубеже нового века был изобретен русским ученым А. С. Поповым радиоприемник. Выдающиеся физики П. Н. Яблочков и А. Н. Лодыгин создали электрическую лампочку. Больших успехов добилась и отечественная химическая наука. Великий ученый, профессор Петербургского университета Д. И. Менделеев сделал мировое открытие, создав периодическую таблицу химических элементов. Профессора Казанского университета H. Н. Зинин и А. М. Бутлеров активно разрабатывали проблемы органической химии. Больших технических достижений в русском кораблестроении добились механик и математик А. Н. Крылов и океанограф адмирал С. О. Макаров. Большие достижения в работе были и у многих других исследователей и естествоиспытателей.

Мирового значения удостоил ась наша географическая наука (П. П. Семенов-Тян-Шанский, H. М. Пржевальский, H. Н. Миклухо-Маклай, П. К. Козлов, В. К. Арсеньев и др.). Получили дальнейшее развитие геолого-стратиграфические исследования (А. П. Карпинский, В. О. Ковалевский, А. П. Павлов, Ф. Н. Чернышев и др.).

В области биологии значительных результатов с позиции естественно-научного материализма добились И. М. Сеченов, И. И. Мечников, А. О. Ковалевский, К. А. Тимирязев. И. И. Мечникову – лауреату Нобелевской премии принадлежат открытия мирового уровня по проблемам бактериологии, А. О. Ковалевскому – по сравнительной эмбриологии, К. А. Тимирязеву – в области фотосинтеза. И. П. Павлову в 1904 г. за его исследования в области физиологии (учение о высшей нервной деятельности человека и животных) была присуждена Нобелевская премия.

Н. Г. Славянов разработал способ горячей сварки металлическим электродом, он получил патенты на изобретение не только в России, но и во Франции, Германии, Великобритании и ряде других стран. К. Э. Циолковский сделал ряд крупнейших открытий в аэродинамике и ракетной технике, им была разработана и теория движения ракет. Впоследствии мир назовет его основоположником теории межпланетных сообщений.

Многие ученые России были участниками международных научных программ, прославив отечественную науку. В плеяде выдающихся русских ученых по праву стоят и имена С. А. Чаплыгина – основоположника теории гидро– и аэродинамики, А. Ф. Можайского – одного из первых авиастроителей, В. И. Вернадского – основателя геохимии и биогеохимии и радиогеологии и др. Наряду с техническими науками активно развивалась и общественная мысль. Русская историография выдвинула в эту пору видных ученых-историков В. О. Ключевского, М. Н. Покровского, Е. В. Тарле.

После Октябрьской революции и Гражданской войны в СССР начался новый этап развития науки и техники. Особенно активно развивались научные направления, связанные с экономическими потребностями страны, – металлургия, авиастроение, физика и др.

ВЕРНАДСКИЙ Владимир Иванович (28.02(12.03).1863–06.01.1945 гг.) – один из основоположников геохимии, радиогеологии, создатель биогеохимии и учения о ноосфере.

Родился в Петербурге в семье профессора-экономиста И. В. Вернадского. В 1885 г. окончил естественное отделение физико-математического факультета Петербургского университета. Под влиянием работ В. В. Докучаева увлекся динамической минералогией и кристаллографией. Путешествовал по Западной Европе, участвовал в Международном геологическом конгрессе. С 1890 г. преподавал на кафедре минералогии в Московском университете, где впоследствии сложилась его научная школа (среди учеников А. Ферсман, Я. Самойлов).

В 1891 г. стал магистром геологии и геогнозии, в 1897 г. защитил докторскую диссертацию. В 1911 г. после избрания его экстраординарным академиком переехал в Петербург. Был участником земского движения в защиту высшей школы. Дважды избирался в Государственный совет от университета. В 1911 г. в знак протеста против мер министра народного просвещения Л. А. Кассо среди других 100 профессоров и преподавателей университета вышел в отставку.

В годы 1-й мировой войны возглавлял постоянную Комиссию по изучению естественных производительных сил России (КЕПС) при АН, которая вела поиски новых месторождений полезных ископаемых, изучала энергоресурсы и т. д. В 1917–1920 гг. стал первым президентом созданной им Украинской АН. В 1920-е гг. был директором Геологического и Минералогического музеев, организовал и возглавил Радиевый институт. В 1922–1926 гг. читал курс геохимии в Сорбонне, проводил эксперименты в институте М. Склодовской-Кюри.

Развивая учение о биосфере, ввел понятие «ноосфера» (сфера разума). При АН им были основаны Комитет по метеоритам и Комиссия по истории знаний, которую Вернадский возглавлял до 1930 г. В 1928 г. им была создана Биогеохимическая лаборатория АН СССР. Влияние его геохимической школы испытали ученые Франции, Чехословакии, США. В 1943 г. получил Государственную премию СССР. Умер и похоронен в Москве. Т. О.

ЖУКОВСКИЙ Николай Егорович (17(29).01.1847–17.03.1921 гг.) – основоположник аэродинамики, член-корреспондент РАН (1917 г.).

Родился в Москве, происходил из старинного дворянского рода. Окончил математический факультет Московского университета. В 1870 г. стал преподавателем математики в Московском высшем техническом училище (МВТУ). Защитил магистерскую диссертацию по гидродинамике, стажировался за границей – в Берлине и Сорбонне, где занимался исследованием движения воздушных потоков. В 1888 г. защитил докторскую диссертацию по прикладной механике, возглавил кафедру Московского университета. В 1902 г. в Московском университете построил аэродинамическую трубу.

В 1904 г. на базе его лаборатории в Кучино был создан первый в мире институт аэродинамических исследований, где он разработал теорию подъемной силы крыла летательного аппарата, методы расчета воздушных винтов и динамики полета. В 1910 г. в МВТУ создал лабораторию, ставшую расчетно-испытательным центром проверки аэродинамических свойств самолетов. Автор трудов по теории авиации, механике твердого тела, астрономии, математике, гидродинамике, гидравлике, прикладной механике.

По инициативе Жуковского были созданы Московский авиационный институт и Военно-воздушная академия. В его квартире в 1918 г. была организована лаборатория, впоследствии ставшая Центральным институтом аэро– и гидродинамики (ЦАГИ). В 1920 г. Жуковский был арестован и сослан в спецчасть НКВД. Т. О.

ПАВЛОВ Иван Петрович (14(26). 19-1849-27.02.1936 гг.) – физиолог, создатель учения о высшей нервной деятельности животных и человека, лауреат Нобелевской премии.

Родился в Рязани в семье священника. Обучался в духовном училище. С 1870 г. учился на естественном отделении Петербургского университета. За свое первое научное исследование (о секреторной иннервации поджелудочной железы) был награжден золотой медалью университета. Два года работал в Ветеринарном институте. В 1877 г. уехал в Бреслау, потом по приглашению С. П. Боткина работал в его клинике. В 1883 г. Павлову было присвоено звание доктора медицинских наук.

Ок. 20 лет занимался исследованиями по физиологии пищеварения. В 1891 г. Павлов стал заведующим физиологическим отделом Института экспериментальной медицины, в 1895–1925 гг. руководил исследованиями в Военно-медицинской академии. За работу по физиологии пищеварения в 1904 г. ему была присуждена Нобелевская премия.

После Октябрьской революции остался в России (был издан декрет о создании благоприятных условий для его работы). Несмотря на это, Павлов полагал, что революцию нужно было пресечь. Павлов сравнивал существующий режим с фашизмом, о чем открыто написал в 1934 г. в ЦИК СССР.

Умер в Ленинграде от пневмонии. Похоронен на Волковой кладбище. Т. О.

ЦИОЛКОВСКИЙ Константин Эдуардович (05(17).09.1857–19.09.1935 гг.) – ученый в области воздухоплавания и ракетной техники.

Родился в селе Ижевском Рязанской губернии в семье лесничего. В десятилетнем возрасте из-за осложнений после скарлатины потерял слух и школу не посещал. В 1873 г. по настоянию отца поселился в Москве у знакомого семьи – философа Н. Федорова, космогоническое учение которого оказало на него большое влияние и подтолкнуло к мысли о расселении человечества на других планетах. В 1879 г., сдав экзамен, получил звание учителя народных училищ и назначение в Боровск. Там он проработал до 1892 г., затем был переведен в Калугу, где до конца дней преподавал физику и математику в епархиальном училище и гимназии. Одновременно вел научную работу.

За работу «Механика животного организма» по предложению Д. Менделеева и А. Столетова был избран действительным членом Русского физико-химического общества. Ему принадлежит проект дирижабля (управляемого аэростата). Он также исследовал механику управляемого полета. Н. Жуковский использовал результаты его работы при создании теории расчета крыла. В 1903 г. опубликовал книгу «Исследования мировых пространств реактивными приборами», которая была замечена лишь в 1912 г.

В нач. 1910-х гг. в журнале «Вестник воздухоплавания» публиковал статьи по теории ракет и жидкостного ракетного двигателя, им была впервые решена задача посадки на поверхность безатмосферных планет. В 1920-е гг. вывел формулу, которая получила его имя, используемую при исчислении количества топлива для космического корабля, рассчитал оптимальную высоту для спутника (300–800 км), сделал ряд практических изобретений. Т. О.

Из книги От Бисмарка до Маргарет Тэтчер. История Европы и Америки в вопросах и ответах автора Вяземский Юрий Павлович

В начале XX века Вопрос 4.1В 1901 году американский миллиардер Эндрю Карнеги продал свои заводы и стал заниматься исключительно благотворительностью.Кому предназначался первый дар Карнеги?Вопрос 4.2В 1902 году будущему родоначальнику фашизма Бенито Муссолини было 19 лет. Он

Из книги Кто есть кто в истории России автора Ситников Виталий Павлович

автора

§ 24. Образование и наука в средние века Школьное образованиеСкладывание централизованных государств в Европе потребовало бо?льшего количества образованных людей. Королям нужны были грамотные чиновники, опытные юристы. Церкви требовались знатоки христианского

Из книги Расцвет и падение древних цивилизаций [Далекое прошлое человечества] автора Чайлд Гордон

Из книги Всемирная история: в 6 томах. Том 4: Мир в XVIII веке автора Коллектив авторов

НАУКА В ЗЕРКАЛЕ ИДЕЙНЫХ КОЛЛИЗИЙ ВЕКА ПРОСВЕЩЕНИЯ В культуре XVIII столетия Природа становится первичной реальностью. Критика традиционных общественных институтов и религиозных догм, мистических грез и темных суеверий, схоластической лжеучености и традиционных

Из книги История Кореи: с древности до начала XXI в. автора Курбанов Сергей Олегович

§ 1. Корея в начале X VII века Выше уже говорилось о тех огромных материальных и людских потерях, которые Корея понесла в годы Имчжинской войны. Поэтому король Сончжо, на время правления которого пришлись все тяготы войны с Японией, попытался начать некоторые реформы,

Из книги Отечественная история: конспект лекций автора Кулагина Галина Михайловна

Тема 14. Россия в начале XX века 14.1. Экономическое и социально-политическое развитие К началу XX в. окончательно складывается система российского капитализма. Россия благодаря индустриализации и промышленному подъему 1890-х гг. из отсталой аграрной страны становится

Из книги Тайны русских волхвов [Чудеса и загадки языческой Руси] автора Асов Александр Игоревич

Истинное ведославие в XIX и начале XX века В те же годы сама традиция жила не в секте Кондратия-Петра и потом Распутина. Это только трагедия традиции. Носителями истинного духа ведославия, его философии, высокой поэзии являлись иные люди.Их мысли, образы тогда, в начале XIX

Из книги Александр III – Миротворец. 1881-1894 гг. автора Коллектив авторов

Культура и наука в конце 19 века Пореформенная эпоха стала временем высоких культурных достижений. Этот этап обусловил наступление «серебряного века» русской культуры. Российские ученые добивались блестящих результатов в точных и естественных науках. Благодаря трудам

Из книги Русская Япония автора Хисамутдинов Амир Александрович

Из книги Разные человечества автора Буровский Андрей Михайлович

Идеология и наука XIX века – основы современного знания Ученые часто и по разным поводам наивно говорят, что наука изменила мир. Верно! Но чтобы это произошло, мир должен был поручить науке изменять самое себя. Хотя бы тем, что общество и государство должны были дать науке

Из книги 50 великих дат мировой истории автора Шулер Жюль

Латинская Америка в начале XIX века Начиная с XVI в., испанские владения занимали большую часть американского континента. С севера, от Калифорнии, Новой Мексики, Техаса и Флориды они протянулись далеко на юг, до мыса Горн. Что касается Луизианы, то Франция вернула ее себе в

Из книги Всеобщая история. История средних веков. 6 класс автора Абрамов Андрей Вячеславович

§ 27. Образование и наука в средние века Школьное образованиеСкладывание централизованных государств в Европе потребовало большего количества образованных людей. Королям нужны были грамотные чиновники, опытные юристы. Церкви требовались знатоки христианского

Из книги Всеобщая история. История Нового времени. 8 класс автора Бурин Сергей Николаевич

Глава 5 Мир в конце XIX – начале XX века «Если суждена ещё когда-либо война в Европе, она начнётся из-за какого-нибудь ужасно несуразного случая на Балканах». Германский политик О. фон Бисмарк Союз России и Франции. Иллюстрация из французского

Из книги От древнего Валаама до Нового Света. Русская Православная Миссия в Северной Америке автора Григорьев Протоиерей Дмитрий

Из книги Последний император Николай Романов. 1894–1917 гг. автора Коллектив авторов

Россия в начале 20 века Царствование Николая II стало временем самых высоких в истории России темпов экономического роста. За 1880–1910 темпы роста промышленного производства превышали 9 % в год. По этому показателю Россия вышла на первое место в мире, опередив даже

Покинув пещеры каменного века, человеческое общество прошло великий путь умственного и духовного развития. Это позволило людям сесть за экраны компьютеров и общаться друг с другом на любом расстоянии, проникнуть в тайны природы и отправить космические корабли к другим планетам. Такое стало возможным благодаря науке, которую создали и развивали многие поколения.

Исторический путь развития

Наука в России допетровских времен значительно отставала от европейской. Это объясняется социальными и культурными особенностями государства и незначительным влиянием Византии.

Первый математический труд в Древней Руси был создан в 1136 году монахом Кириком. Несколько позднее появились переводы книг по логике, космографии и арифметике.

Наука в качестве социального института возникла в нашем государстве при Петре I. Именно в эпоху его царствования в Америку и в Сибирь отправились первые экспедиции Василия Татищева и Витуса Беринга.

1724 год ознаменовался открытием Петербургской академии наук. Работать в этом учреждении пригласили многих известных европейских ученых. Неоценимое значение для развития русской науки имели труды и деятельность академика Михаила Ломоносова.

Научную элиту в России представляли:

Математики (Н. И. Лобачевский, М. В. Остроградский и др.);
- физики (А. С. Попов, А. Г. Столетов);
- химики (Д. И. Менделеев, А. М. Бутлеров, Н. Н. Зинин и др.);
- врачи (С. П. Боткин, Н. И. Пирогов);
- историки (Н. М. Карамзин, В. О. Ключевский).

Начало двадцатого столетия

Этот период охарактеризовался превращением аграрной России в мощное индустриальное государство. Те реформы, которые проводило правительство, привлекли в страну капитал. В России начали усиленно развиваться различные сферы промышленности, а также железнодорожная отрасль.

Уже с конца девятнадцатого столетия начался подъем культуры, архитектуры, литературы и т.д. Наука в начале 20 века также достигла своего значительного расцвета. В этот период произошла настоящая революция естествознания, имевшая огромное значение в развитии общества. Крупные научные открытия 20 века, сделанные в этот период, стали причиной пересмотра уже существующих представлений об окружающем человека мире.

Создание научно-технических обществ

Научные открытия 20 века в дореволюционной России были сделаны благодаря работе различных кружков. Последние представляли собой небольшие сообщества, в состав которых входили не только исследователи-практики, но и энтузиасты-любители. Существовали такие кружки за счет взносов своих членов и частных пожертвований. Некоторым обществам правительство выделяло крупные субсидии.

Помимо медицинских и сельскохозяйственных, металлургических и ботанических, географических и физико-химических существовали и тайные научные кружки. Примером тому может послужить Общество космонавтики. Его членами были будущие великие деятели науки 20 века - Циолковский, Королев и др.

Все эти кружки были центрами проведения исследовательских работ и пропаганды научных знаний среди населения. Однако основной вклад в образование страны все же принадлежал лицеям и университетам, из которых и выходили перечисленные выше общества.

Развитие медицины, генетики и биологии

Каковы достижения русской науки начала 20 века в этой области? К ним можно отнести классический труд академика И. П. Павлова. Русским ученым были проведены исследования физиологии органов пищеварения и сердечно-сосудистой системы. За свой труд в 1904 г. Павлов был удостоен Нобелевской премии. Эта же награда в 1908 г. была присуждена И. И. Мечникову. Ее ученый получил за труды по инфекционным заболеваниям и иммунологии. Также Мечниковым было изучено влияние высшей нервной деятельности на течение физиологических процессов. На основе полученных знаний ученым была выдвинута теория условных рефлексов.

Открытия 20 века в области биологии стали мощным импульсом для развития медицины. Начало столетия ознаменовалось разработкой прививок против бешенства, куриной холеры и сибирской язвы. Все это явилось результатом исследований бактериолога парижского института Л. Пастера. На основе данных трудов ученые многих стран мира, в том числе и России, вели разработку мер, направленных на профилактику и предупреждение различных эпидемий.

Большой вклад в развитие генетики внес ученый И.В. Мичурин. Этот основатель науки о селекции плодовых растений работал в Тамбовской губернии, в своем родном городе Козлове. Целью ученого было обогащение садов России новыми культурами. Несмотря на стоящие перед ним преграды, ученый выполнил свою задачу.

Он разработал практическую методику и сделал теоретические выводы получения разнообразных гибридов, обладающих необычными и полезными свойствами для человека.

Совершенствование боевой техники

Развитию этой области способствовала агрессивность ведущих государств мира и все возрастающие технические возможности. Уже в 1911-1915 годах российские инженеры А.А. Пороховщиков, В.Л. Менделеев и А.А. Васильев создали первый проект бронированной машины, которую впоследствии назвали танком.

Изобретения и открытия 20 века относятся и к области авиации. Так, первые военные самолеты участвовали в маневрах, проводимых в 1911 году Варшавским, Петербургским и Киевским округами. В боевых действиях эта техника применялась в период Балканских войн 1912-1913 гг. В 1914 г. на вооружение российских войск был принят первый бомбардировщик, который назвали «Илья Муромец».

Не отставал от авиации и военно-морской флот. Здесь первенство принадлежало броненосным паровым кораблям. Одним из первых среди них был «Петр Великий».

Изобретение автомата

Наука и техника 20 века в России нередко ставили своей задачей укрепление военного потенциала страны. На этом поприще удалось добиться значительных успехов. Так, в 1916 г. конструктором-оружейником Федоровым был изобретен первый в мире автомат. Для этого пришлось укоротить ствол винтовки образца 1913 г. и снабдить ее коробчатым магазином, а также рукояткой для удобной стрельбы. В итоге получилось огневое средство, которое на сегодняшний день является основой вооружения пехоты любой армии мира.

Развитие химии и физики

Многие научные открытия 20 века в этой области были сделаны в странах Западной Европы. Благодаря им человечество с паровых двигателей стало переходить на двигатели внутреннего сгорания. Однако новые способы добычи главного сырья для таких механизмов (нефти) были предложены именно русскими учеными.

Появление двигателей большей мощности натолкнуло исследователей на идею создания летательных аппаратов. Первые попытки прорыва в области воздухоплавания были осуществлены еще в 19 веке. Именно тогда свет увидели дирижабли и аэростаты.

Каковы достижения русской науки начала 20 века в этой области? В нашей стране были созданы двух-, а также четырехмоторные самолеты, поразившие современников своими внушительными размерами. Над их созданием трудились такие инженеры, как И. И. Сикорский и В. Г. Луцкой.

Открытия 20 века в области авиации на этом не заканчиваются. Выдающийся русский ученый Б. Н. Юрьев в 1911 году изобрел основной узел, используемый при сборке современных вертолетов. Данное устройство позволило создавать технику с высокими характеристиками устойчивости. Такие вертолеты могут безопасно управляться рядовыми летчиками. Развитие науки в 20 веке в области вертолетостроения было заложено именно Юрьевым.

В этот же период зарождались истоки современной космонавтики. Основные открытия 20 века в этой области были сделаны учителем калужской гимназии, самородком К.Э. Циолковским. В 1903 г. им были опубликованы блестящие труды, в которых обосновывались возможности космических полетов.

Каковы достижения русской науки начала 20 века в области физики? Это открытие общих закономерностей, присущих волновым процессам (электромагнитным, звуковым и т.д.). Они были установлены выдающимся физиком П. Н. Лебедевым.

Величайшие открытия в науке 20 века были сделаны В. И. Вернадским. Этот ученый стал известен во всем мире после опубликования своих энциклопедических трудов, которые выступили основой для развития новейших направлений в радиологии, геохимии и биохимии. Работы Вернадского о ноосфере и биосфере являются истоками современной экологии.

Изобретение ранцевого парашюта

В 1910 г. Г. Е. Котельников посетил всероссийский праздник, посвященный воздухоплаванию. На нем он стал одним из свидетелей трагической гибели летчика Л. Мациевича. Котельников был не конструктором, а актером. Однако смерть пилота настолько потрясла его, что уже через год он изобрел парашют РК-1, принципиально отличавшийся от предыдущих разработок.

Купола как средство спасения и ранее использовались воздухоплавателями. Однако РК-1 был более компактным. К тому же парашют стал представлять собой устройство экстренного реагирования, постоянно находящееся под рукой. Стропы и купол РК-1 укладывались поначалу в деревянный ранец, который несколько позже был заменен на алюминиевый. На дне ящика Котельников расположил пружины. В нужный момент парашютист дергал за кольцо. В этот момент пружины открывали крышку ящика и выбрасывали купол наружу. В настоящее время этим изобретением пользуются парашютисты всего мира.

Появление телевизора

Российская наука в 20 веке преподнесла миру изобретение, которое стало открытием эпохи. В 1907 г. профессором технологического института, находящегося в Санкт-Петербурге, Б. Л. Розингом была подана патентная заявка на «способ электрической передачи различных изображений и их прием с помощью электронно-лучевой трубки».

Осенью 1910 г. ученый сделал публичный доклад на заседании Русского технического общества, в котором рассказал о решении вопросов, стоящих на пути развития телевидения. Розинг уверял, что при применении таких приборов необходимо использовать электронный пучок. Самое удивительное в том, что данный вывод был сделан в тот период, когда электроника как отрасль находилась еще в зачаточном состоянии. На созданную им телевизионную систему Розинг получил вначале российский патент, а после - германский, английский и американский.

Открытия в области географии

Каковы достижения русской науки начала 20 века в сфере изучения устройства мира? В этот период совершались путешествия в страны Океании и на север Африки, в Восточную и Среднюю Азию. Каждое из них ознаменовалось глобальными открытиями. Стоит сказать о том, что географическая наука в начале 20 века опиралась именно на достижения, полученные русскими исследователями.

Становление СССР

Наука в России при советской власти подарила всему миру множество великих открытий и достижений в различных сферах человеческой деятельности. Даже их беглое перечисление указывает на тот прорыв, который был совершен учеными.

Достижения советской науки сыграли огромную роль в развитии народного хозяйства страны. При этом на их основе создавались такие новейшие для того времени отрасли промышленности, как тракторная и авиационная, автомобильная и металлургическая. Результаты проводимых научных исследований позволили развить производство синтетического каучука, моторного топлива и т.д.

Достижения, полученные учеными-биологами, позволяли решать задачи пищевой и легкой промышленности, а также сельского хозяйства. Кроме того, результаты многочисленных исследований привели к прогрессу здравоохранения и медицинской сферы.

В Советском Союзе были развернуты грандиозные исследовательские программы. Открывались и новые НИИ. Так, в 1934 г. Вавиловым был основан Физический институт Академии Наук, в тот же период начал свою работу Институт органической химии. 1937-й - год основания Института геофизики. Свою работу продолжили физиолог Павлов и селекционер Мичурин. В результате исследований, проведенных учеными, были сделаны многочисленные открытия по различным дисциплинам. Однако в годы репрессий интеллектуальному потенциалу государства был нанесен тяжелый урон.

Послевоенный период

Возрождение советской науки произошло в 1950 г. Исследовательской деятельностью в эти годы руководила АН. Академии Наук были восстановлены и во всех республиках страны. Это дало возможность принимать патенты на изобретения и осуществлять контроль над расходованием выделяемых государством финансов для этой сферы.

Уже в середине пятидесятых возрастает интерес к космонавтике. В этой сфере растет число ученых. Появляются специальные учебники и факультеты в вузах. Все это делается целенаправленно для воспитания молодых ученых.

1957 г. принес настоящий фурор в мире науки. Это был год запуска первого искусственного спутника Земли. Страна, сравнительно недавно пострадавшая в страшной войне, не только восстановила свой научный потенциал, но и стала лидером в научном прогрессе. Это событие открыло новую эру человечества и одновременно стало началом «космической гонки» с Америкой, которая не желала терять свой мировой авторитет.

В 1959 г. советский спутник достиг Луны. Это вновь повысило авторитет России в мирового сообществе. Уже в начале шестидесятых Советский Союз стал второй после США супердержавой в мире. Америка обгоняла нашу страну только по экономическому потенциалу.

12 апреля 1961 года произошло еще одно невероятное событие, которое ранее описывали в своих произведениях фантасты. В этот день человек впервые в истории полетел в космос и вернулся на землю.

В 80-х годах в нашей стране начали разработку и производство современных электронно-вычислительных машин - компьютеров. Данная техника была компактна и не занимала целые здания и комнаты. Это были годы, когда Советский Союз тратил на научную сферу огромные ресурсы, составлявшие десятую часть бюджета государства. Такого не могла себе позволить ни одна страна в мире.

Среди огромного количества научных исследований, проведенных в России, есть немало таких, которые оказали и продолжают до сих пор оказывать значительное влияние на научно-технический прогресс всего мирового сообщества. Речь идет о многочисленных открытиях в области химических, биологических и физико-технических наук. К ним можно отнести открытие явления парамагнитного резонанса Е. К. Завойским. Немаловажную роль российские ученые сыграли и в решении вопросов получения атомной энергии.

Радио, телевидение, первый искусственный спутник, цветная фотография и многое другое вписано в историю русских изобретений. Эти открытия положили начало феноменальному развитию самых разных сфер в области науки и техники. Разумеется, некоторые из этих историй знает каждый, ведь порой они становятся чуть ли не знаменитее самих изобретений, тогда как другие так и остаются в тени своих громких соседей.

1. Электромобиль

Современный мир сложно представить без машин. Конечно, к изобретению этого транспорта приложил руку не один ум, а к усовершенствованию машины и доведению её до сегодняшнего состояния количество участников увеличивается в разы, географически собирая воедино весь мир. Но отдельно мы отметим Ипполита Владимировича Романова, так как ему принадлежит изобретение первого в мире электромобиля. В 1899 году в Санкт-Петербурге инженер представил четырехколесных экипаж, рассчитанный на перевозку двух пассажиров. Среди особенностей этого изобретения можно отметить то, что диаметр передних колёс значительно превышал диаметр задних. Максимальная скорость равнялась 39 км/ч, но очень сложная система подзарядки позволяла пройти на этой скорости только 60 км. Этот электромобиль стал праотцом известного нам троллейбуса.

2. Монорельс

И сегодня монорельсовые дороги производят футуристическое впечатление, поэтому можно представить, насколько невероятной по меркам 1820 года была «дорога на столбах», изобретенная Эльмановым Иваном Кирилловичем. Запряженная лошадьми вагонетка двигалась по брусу, который был установлен на небольшие опоры. К огромному сожалению Эльманова, не нашелся меценат, заинтересовавшийся изобретением, из-за чего ему пришлось оставить идею. И только спустя 70 лет монорельсовая дорога была построена в Гатчине, Петербургская губерния.

3. Электродвигатель

Борис Семенович Якоби, архитектор по образованию, в возрасте 33 лет, будучи в Кенигсберге, увлекся физикой заряженных частиц, и в 1834 году он делает открытие – электродвигатель, работающий по принципу вращения рабочего вала. Мгновенно Якоби становится знаменитым в ученых кругах, и среди многих приглашений на дальнейшее обучение и развитие он выбирает Петербургский университет. Так, вместе с академиком Эмилием Христиановичем Ленцем он продолжил работу над электродвигателем, создав еще два варианта. Первый был предназначен для лодки и вращал гребные колеса. С помощью этого двигателя судно легко держалось на плаву, двигаясь даже против течения реки Невы. А второй электродвигатель был прообразом современного трамвая и катил по рельсам человека в тележке. Среди изобретений Якоби можно отметить также гальванопластику – процесс, который позволяет создавать идеальные копии исходного предмета. Это открытие повсеместно применялось для украшений интерьеров, домов и многого другого. Среди заслуг ученого также числится создание подземных и подводных кабелей. Борис Якоби стал автором около десятка конструкций телеграфных аппаратов, а в 1850 году изобрел первый в мире буквопечатающий телеграфный аппарат, который работал по принципу синхронного движения. Это устройство было признано одним из крупнейших достижений электротехники середины XIX века.

4. Цветная фотография

Если раньше всё происходящее стремилось попасть на бумагу, то теперь вся жизнь направлена на получение фотографии. Поэтому без этого изобретения, ставшего частью маленькой, но насыщенной истории фотографии, мы бы не увидели такой “реальности”. Сергей Михайлович Прокудин-Горский разработал особую фотокамеру и представил своё детище миру в 1902 году. Эта камера была способна делать три снимка одного и того же изображения, каждый из которых пропускался сквозь три совершенно разных световых фильтра: красный, зеленый и синий. А патент, полученный изобретателем в 1905 году, можно без преувеличения считать началом эры цветной фотографии в России. Это изобретение становится намного качественнее наработок зарубежных химиков, что является важным фактом ввиду массового интереса к фотографии по всему миру.

5. Велосипед

Принято считать, что все сведения об изобретении велосипеда до 1817 года сомнительны. В это время входит и история Ефима Михеевича Артамонова. Уральский крепостной изобретатель совершил первый велопробег примерно в 1800 году из уральского рабочего Тагильского заводского посёлка в Москву, расстояние составило около двух тысяч вёрст. За своё изобретение Ефиму была дарована свобода от крепостной зависимости. Но это история так и остаётся легендой, тогда как патент немецкого профессора барона Карл фон Дрез от 1818 года является историческим фактом.

6. Телеграф

Человечество всегда искало способы максимально быстрой передачи информации от одного источника другому. Огонь, дым от костра, различные комбинации звуковых сигналов помогали людям передавать сигналы бедствия и другие чрезвычайные сообщения. Развитие этого процесса – бесспорно, одна из важнейших задач, стоящих перед миром. Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году, представив его в своей квартире. Он придумал определенную комбинацию символов, каждой из которых соответствовала буква алфавита. Эта комбинация проявлялась на аппарате черными или белыми кружками.

7. Лампа накаливания

Если произносится «лампа накаливания», то сразу в голове звучит фамилия Эдисона. Да, это изобретение не менее знаменито, чем имя его изобретателя. Однако сравнительно небольшое количество людей знает, что Эдисон не изобрел лампу, а только усовершенствовал её. Тогда как Александр Николаевич Лодыгин, будучи членом Русского технического общества, в 1870 году предложил применять в лампах нити накаливания из вольфрама, закручивая их в спираль. Безусловно, история изобретения лампы не является результатом труда одного ученого – скорее, это череда последовательных открытий, которые витали в воздухе и были необходимы миру, но именно вклад Александра Лодыгина стал особенно великим.

8. Радиоприемник

Вопрос о том, кто же является изобретателем радио, является спорным. Почти в каждой стране есть свой ученый, которому приписывается создание этого прибора. Так, в России этим ученым является Александр Степанович Попов, в пользу которого приводится немало весомых аргументов. 7 мая 1895 года были впервые продемонстрированы прием и передача радиосигналов на расстоянии. И автором этой демонстрации был Попов. Он не только первым применил на практике приемник, но и первым послал радиограмму. И то и другое событие произошло до патента Маркони, который считается изобретателем радио.

9. Телевидение

Открытие и широкое распространение телевизионного вещания кардинальным образом изменило способы распространения информации в обществе. К этому мощнейшему достижению причастен и Борис Львович Розинг, который в июле 1907 года подал заявку на изобретение «Способа электрической передачи изображений на расстояния». Борису Львовичу удалось успешно передать и получить точное изображение на экране пока ещё простейшего устройства, бывшего прототипом кинескопа современного телевизора, которое ученый назвал «электрическим телескопом». Среди тех, кто помогал Розингу с опытом, был тогда ещё студент Санкт-Петербургского Технологического института Владимир Зворыкин – именно его, а не Розинга, через несколько десятилетий назовут отцом телевидения, хотя в основе работы всех воспроизводящих телевизионных устройств лежал принцип, открытый Борисом Львовичем в 1911 году.

10. Парашют

Глеб Евгеньевич Котельников был актером труппы Народного дома на Петербургской стороне. Тогда же, под впечатлением от гибели летчика, Котельников занялся разработкой парашюта. До Котельникова лётчики спасались с помощью длинных сложенных «зонтов», закреплённых на самолёте. Их конструкция была очень ненадёжна, к тому же они сильно увеличивали вес самолёта. Поэтому использовали их крайне редко. Свой законченный проект ранцевого парашюта Глеб Евгеньевич предложил в 1911 году. Но, несмотря на успешные испытания, патент в России изобретатель не получил. Вторая попытка была более удачной, и в 1912 году во Франции его открытие получило юридическую силу. Но и этот факт не помог парашюту начать широкое производство в России из-за опасений начальника российских воздушных сил, великого князя Александра Михайловича, что при малейшей неисправности авиаторы будут покидать аэроплан. И только в 1924 году он наконец-то получает отечественный патент, а позже передает все права на использование своего изобретения правительству.

11. Киноаппарат

В 1893 году, работая вместе с физиком Любимовым, Иосиф Андреевич Тимченко создает так называемую «улитку» - особый механизм, с помощью которого в стробоскопе удавалось прерывисто менять очередность кадров. Данный механизм позже лег в основу кинетоскопа, который Тимченко разрабатывает совместно с инженером Фрейденбергом. Демонстрация кинетоскопа состоялась в следующем году на съезде русских врачей и естествоиспытателей. Были показаны две ленты: «Копьеметатель» и «Скачущий всадник», которые были сняты на Одесском ипподроме. Этому событию даже есть документальные подтверждения. Так, в протоколе заседания секции значится: «Представители собрания с интересом ознакомились с изобретением господина Тимченко. И, в соответствии с предложениями двух профессоров, решили выразить благодарность господину Тимченко».

12. Автомат

С 1913 года изобретатель Владимир Григорьевич Федоров приступает к работам, заключающимся в испытаниях автоматической винтовки (ведущей стрельбу очередями) под патрон калибра 6,5 миллиметра, которая являлась плодом его разработки. Уже спустя три года такими винтовками уже вооружают солдат 189-го Измаильского полка. Но серийный выпуск автоматов удалось развернуть лишь после окончания революции. На вооружении отечественной армии оружие конструктора находилось вплоть до 1928 года. Но, согласно некоторым данным, в период Зимней войны с Финляндией войсками все же использовались некоторые экземпляры автомата Федорова.

13. Лазер

История изобретения лазера началась с имени Энштейна, который создал теорию взаимодействия излучения с веществом. Тогда же и Алексей Толстой в своем знаменитом романе «Гиперболоид инженера Гарина» писал примерно об этом же. Вплоть до 1955 года попытки создать лазер не были успешными. И только благодаря двум русским инженерам-физикам – Н.Г. Басову и А.М. Прохорову, которые разработали квантовый генератор, лазер начал свою историю на практике. В 1964 году Басов и Прохоров получили Нобелевскую премию по физике.

14. Искусственное сердце

Имя Владимира Петровича Демихова связано не с одной операцией, которая совершалась впервые. Удивительно, но Демихов не был врачом – он был биологом. В 1937 году, будучи третьекурсником биологического факультета Московского государственного университета, он создал механическое сердце и поставил его собаке вместо настоящего. Собака жила с протезом около трех часов. После войны Демихов устроился в Институт хирургии Академии медицинских наук СССР и создал там небольшую экспериментальную лабораторию, в которой начал заниматься исследованиями по пересадке органов. Уже в 1946 году он первым в мире осуществил пересадку сердца от одной собаки другой. В том же году он тоже впервые провел пересадку собаке сердца и легкого одновременно. И что самое главное – собаки Демихова жили с пересаженными сердцами по несколько суток. Это был настоящий прорыв в сердечно-сосудистой хирургии.

15. Наркоз

С древнейших времен человечество мечтало избавиться от боли. Особенно это касалось лечения, которое порой было болезненнее самого недуга. Травы, крепкие напитки лишь притупляли симптомы, но не позволяли совершать серьезных действий, сопровождаемых серьезными болевыми ощущениями. Это существенно тормозило развитие медицины. Николай Иванович Пирогов – великий русский хирург, которому мир обязан многими важнейшими открытиями, внес огромный вклад в анестезиологию. В 1847 году он обобщил свои эксперименты в монографии по наркозу, которая была издана во всем мире. Тремя годами позднее он впервые в истории медицины начал оперировать раненых с эфирным обезболиванием в полевых условиях. Всего великий хирург провел около 10 000 операций под эфирным наркозом. Также Николай Иванович является автором топографической анатомии, которая не имеет аналогов в мире.

16. Самолёт Можайского

Над решением сложнейших задач по разработке самолета работали многие умы по всему миру. Многочисленные чертежи, теории и даже тестовые конструкции не давали практического результата – самолет не поднимал в воздух человека. Талантливый русский изобретатель Александр Федорович Можайский первым в мире создал самолет в натуральную величину. Изучив труды своих предшественников, он развил и дополнил их, используя свои теоретические познания и практический опыт. Его результаты в полной мере разрешали вопросы своего времени и, несмотря на очень неблагоприятную обстановку, а именно отсутствие фактических возможностей в материальном и техническом плане, Можайский смог найти в себе силы для завершения постройки первого в мире самолета. Это был творческий подвиг, навеки прославивший нашу Родину. Но сохранившиеся документальные материалы, к сожалению, не позволяют в необходимых подробностях дать описание самолета А. Ф. Можайского и его испытаний.

17. Аэродинамика

Николай Егорович Жуковский разработал теоретические основы авиации и способы расчета самолетов - и это в те времена, когда строители первых самолетов утверждали, что «самолет – не машина, его рассчитать нельзя», и больше всего надеялись на опыт, практику и свою интуицию. В 1904 году Жуковский открыл закон, определяющий подъёмную силу крыла самолёта, определил основные профили крыльев и лопастей винта самолёта; разработал вихревую теорию воздушного винта.

18. Атомная и водородная бомба

Академик Игорь Васильевич Курчатов занимает особое место в науке ХХ века и в истории нашей страны. Ему – выдающемуся физику – принадлежит исключительная роль в разработке научных и научно-технических проблем овладения ядерной энергией в Советском Союзе. Решение этой сложнейшей задачи, создание в cжатые сроки ядерного щита Родины в один из наиболее драматических периодов истории нашей страны, разработка проблем мирного использования ядерной энергии было главным делом его жизни. Именно под его началом создается и успешно испытывается в 1949 году самое страшное оружие послевоенного времени. Без права на ошибку, иначе – расстрел… А уже в 1961 году группой физиков-ядерщиков лаборатории Курчатова было создано самое мощное взрывное устройство за всю историю человечества - водородная бомба АН 602, за которой тут же закрепилось вполне уместное историческое название - «царь-бомба». При испытании этой бомбы сейсмическая волна, возникшая в результате взрыва, три раза обогнула земной шар.

19. Ракетно-космическая техника и практическая космонавтика

Имя Сергея Павловича Королёва характеризует одну из наиболее ярких страниц истории нашего государства – эру освоения космического пространства. Первый искусственный спутник Земли, первый полет человека в космос, первый выход космонавта в открытый космос, многолетняя работа орбитальной станции и многое другое непосредственно связано с именем академика Королёва – первого Главного конструктора ракетно-космических систем. С 1953 по 1961 год каждый день Королёва был расписан по минутам: одновременно он работал над проектами пилотируемого космического корабля, искусственного спутника и межконтинентальной ракеты. 4 октября 1957 года стало великим днём для мировой космонавтики: после этого спутник еще долгих 30 лет пролетал через советскую поп-культуру и даже прописался в Оксфордском словаре как «sputnik». Ну а о том, что произошло 12 апреля 1961 года, достаточно сказать «человек в космосе», ведь почти каждый наш соотечественник знает, о чем идет речь.

20. Вертолеты серии “Ми”

В годы Великой Отечественной войны академик Миль работал в эвакуации в посёлке Билимбай, в основном занимаясь усовершенствованием боевых самолётов, улучшением их устойчивости и управляемости. Его деятельность была отмечена пятью правительственными наградами. В 1943 году Миль защитил кандидатскую диссертацию «Критерии управляемости и маневренности самолёта»; в 1945 году - докторскую: «Динамика ротора с шарнирным креплением лопастей и её приложение к задачам устойчивости и управляемости автожира и геликоптера». В декабре 1947 года М. Л. Миль стал главным конструктором опытного КБ по вертолётостроению. После серии испытаний в начале 1950 года вышло постановление о создании опытной серии из 15 вертолётов ГМ-1 под обозначением Ми-1.

21. Самолеты Андрея Туполева

В конструкторском бюро Андрея Туполева было разработано более 100 типов самолетов, 70 из которых в разные годы выпускались серийно. При участии его самолётов установлено 78 мировых рекордов, выполнено 28 уникальных перелетов, в том числе спасение экипажа парохода “Челюскин” при участии самолёта АНТ-4. Беспосадочные перелеты экипажей Валерия Чкалова и Михаила Громова в США через Северный полюс выполнялись на самолётах модели АНТ-25. В научных экспедициях “Северный полюс” Ивана Папанина также использовались самолёты АНТ-25. Большое число самолётов-бомбардировщиков, торпедоносцев, разведчиков конструкции Туполева (ТВ-1, ТВ-3, СБ, ТВ-7, МТБ-2, ТУ-2) и торпедных катеров Г-4, Г-5 применялось в боевых действиях в Великой Отечественной войне в 1941-1945 годах. В мирное время в числе разработанных под руководством Туполева военных и гражданских самолетов значились стратегический бомбардировщик Ту-4, первый советский реактивный бомбардировщик Ту-12, турбовинтовой стратегический бомбардировщик Ту-95, ракетоносец-бомбардировщик дальнего действия Ту-16, сверхзвуковой бомбардировщик Ту-22; первый реактивный пассажирский самолет Ту-104 (был построен на базе бомбардировщика Ту-16), первый турбовинтовой межконтинентальный пассажирский авиалайнер Ту-114, ближне- и среднемагистральные самолеты Ту-124, Ту-134, Ту-154. Совместно с Алексеем Туполевым был разработан сверхзвуковой пассажирский самолёт Ту-144. Самолеты Туполева стали основой парка авиакомпании “Аэрофлот”, а также эксплуатировались в десятках стран по всему миру.

22. Микрохирургия глаза

Миллионы врачей, получив диплом, горят желанием помогать людям, мечтают о будущих свершениях. Но большинство из них постепенно теряют прежний запал: никаких стремлений, одно и то же из года в год. У Федорова энтузиазм и интерес к профессии год от года лишь рос. Спустя всего шесть лет после института он защитил кандидатскую диссертацию, а в 1960 году в Чебоксарах, где он тогда работал, провел революционную операцию по замене хрусталика глаза на искусственный. Подобные операции проводились за рубежом и ранее, однако в СССР считались чистым шарлатанством, и Федорова уволили с работы. После этого он стал заведующим кафедрой глазных болезней в Архангельском мединституте. Именно здесь в его биографии началась «империя Федорова»: вокруг неуемного хирурга собрался коллектив единомышленников, готовый к революционным изменениям в микрохирургии глаза. В Архангельск потянулись люди со всей страны с надеждой снова обрести утраченное зрение, – и они действительно прозревали. Инновационного хирурга оценили и «официально» – вместе со своей командой он перебрался в Москву. И начал творить совершенно фантастические вещи: делать коррекцию зрения при помощи кератотомии (особых насечек на роговице глаза), пересаживать донорскую роговицу, разработал новый метод оперирования глаукомы, стал пионером лазерной микрохирургии глаза.

23. Тетрис

Середина 80-х. Время, овеянное легендами. Идея тетриса родилась у Алексея Пажитнова в 1984 году после знакомства с головоломкой американского математика Соломона Голомба Pentomino Puzzle. Суть этой головоломки была довольно проста и до боли знакома любому современнику: из нескольких фигур нужно было собрать одну большую. Алексей решил сделать компьютерный вариант пентамино. Пажитнов не просто взял идею, но и дополнил ее: в его игре собирать фигурки в стакане предстояло в реальном времени, причем сами фигурки состояли из пяти элементов и во время падения могли проворачиваться вокруг собственного центра тяжести. Но компьютерам Вычислительного центра это оказалось не под силу - электронному пентамино попросту не хватало ресурсов. Тогда Алексей принимает решение сократить количество блоков, из которых состояли падающие фигурки, до четырех. Так из пентамино получился тетрамино. Новую игру Алексей нарекает “тетрисом”.

В продолжение темы:
Отношения

Необыкновенное. Загадочное. Непостижимое. Диковинное. Невиданное. Чудесное… Богат набор слов, означающих неведомое. И действительно, разве мало в нашей жизни, в истории...

Новые статьи
/
Популярные