Зарождение эволюционных идей в науке. Развитие эволюционных идей. Эволюционные идеи в древности. Средневековье и эпоха Возрождения

Этап зарождения и формирования эволюционных идей - с начала 30-х гг. XIX в. до конца XIX - начала XX в.

Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпиричес­кий материал, которые не «вмещались» в механическую картину мира и не объяснялись ею.

«Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

В физике активизировались иссле­дования в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791-1867) и Д. Максвелл (1831-1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления.

Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле.

Надо заметить, что в отличие от классической механики, использовавшей принцип дальнодействия, здесь, в электродинамике, теория строится на основе принципа близкодействия, согласно которому передача энергии осуществляется от точки к точке с конечной скоростью. В работах М. Фарадея, а затем и Д. К. Максвелла роль такого переносчика энергии была отведена электромагнитному полю.

Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био-Савара-Лапласа и др.). Поскольку электромагнитные процессы не редуцировались к механическим, то стало формироваться убеждение в том, что основные законы мироздания - не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электричество, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику.

Что касается второго направления изменения механической картины мира, то его начало связано с именами английского гео­лога Ч. Лайеля (1797-1875) и французскими биологами Ж Б. Ла-марком (1744-1829) иЖ Кювье(1769-1832).

Ч. Лайель в своем главном труде «Основы геологии» (1830-1833) разработал учение о медленном и непрерыв­ном изменении земной поверхности под влиянием постоянных геологических факторов. Ч. Лайель - один из основоположников актуалистического метода в естествознании, суть которого в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее - ключ к прошлому). Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение - это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это ме­тафизический, «плоскоэволюционный» подход.

Ж. Б. Ламарк создал первую целостную концепцию эволю­ции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в резуль­тате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теори­ей катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли за­вершается мировой катастрофой - поднятием и опусканием материков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях по­явились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.

Итак, уже в первые десятилетия XIX в. было фактически под­готовлено «свержение» метафизического в целом способа мышления, господствовавшего в естествознании. Особенно этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.

Теория клетки была создана немецкими учеными М. Шлейденом и Т. Шванном в 1838-1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных.

Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленц) показало, что признававшиеся ранее изолированными так называемые «силы» - теплота, свет, электричество, магнетизм и т. п. - взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.

Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные организмы (включая человека) - не Богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции - наследственность и изменчивость - и движущие факторы эволюции - естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений.

Впоследствии теорию Дарвина подтвердила генетика, пока­зав механизм изменений, на основе которых и способна работать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном структуры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и до­стижения генетики. 3

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель. Познакомить учащихся с возникновением и развитием эволюционных идей, эволюционным учением Ч. Дарвина.

Методы . Урок-лекция.

Ход урока

1. Объяснение

  • План лекции.
  • Термины
  • Аристотель и органическая эволюция
  • Карл Линней – провозвестник эволюционизма.
  • Эволюционное учение Ж.Б. Ламарка.
  • Эволюционное учение Ч. Дарвина

Вначале познакомимся с новыми терминами темы.

Креационизм – учение, согласно которому жизнь была создана сверхъестественным существом в определенное время.

Метафизическое мировоззрение – (греч. “физис” - природа; “мета” - над) – изначальная и абсолютная целесообразность, а поэтому постоянство и неизменность всей природы.

Трансформизм – учение о превращении одного вида в другой.

Эволюция – (лат. эвольво - развёртываю /эволютио/ - развёртывание) историческое изменение формы организации и поведения живых существ в ряду поколений.

Аристотель и органическая эволюция

Новый раздел биологии называется эволюционное учение, или дарвинизм, так как теория эволюции утвердилась в биологии благодаря работам выдающегося английского ученого Чарльза Дарвина. Однако сама идея эволюции стара как мир. Представлениями о возможности превращения (трансформации) одного вида в другой пронизаны мифы многих народов. Зачатки эволюционных представлений можно найти как в трудах мыслителей Древнего Востока, так и в высказываниях античных философов. 1000 лет до н. э. в Индии и Китае считали, что человек произошёл от обезьяны.

Как вы думаете почему?

Похожи и в Индии обезьяна - священнное животное и это даже почетно.

Древнегреческий мыслитель, философ, основоположник биологии, отец зоологии Аристотель (384–322 гг. до н.э.) сформулировал теорию непрерывного и постепенного развития живого из неживой материи, основанную на его наблюдениях над животными. При этом он исходил из метафизической концепции о стремлении природы от простого и несовершенного к более сложному и совершенному. Аристотель признавал эволюцию земных толщ, а в эволюцию живых организмов нет, хотя в своей “Лестнице природы” сгруппировал и расположил неживую материю и все живые организмы в определённом порядке от примитивных к более сложным, что наводило на мысль о родстве между живыми организмами.

Карл Линней – провозвестник эволюционизма.

Карл Линней – шведский учёный (1707-1778 гг.) – отец ботаники, король цветов, великий систематизатор Природы.

Предложил простую схему классификации животных и растений, лучшую из всех предыдущих.

а) Основной систематической единицей Линней считал вид (совокупность особей сходных по строению и дающих плодовитое потомство). Вид существует и не изменяется.

б) Все виды он объединил в роды, роды в отряды, отряды – в классы.

в) Линней отнес кита к классу млекопитающих, хотя в XVII веке считали кита рыбой.

г) Линней впервые в истории науки поставил человека первым в отряде приматов в классе млекопитающих, вместе с обезьянами и полуобезьянами на основании сходства между человеком и обезьяной.

Линней применил ясный, удобный принцип двойных названий.

До Линнея ученые давали растениям только названия родовые. Называли: дуб, клен, роза, сосна, крапива и т. д. Наука употребляла названия растений по родам, подобно тому, как это обычно делается в разговорном житейском языке, применительно к растениям и животным, чтобы обозначить вид, употребляли длинные описания признаков. Так, до Линнея шиповник назывался "Обыкновенная лесная роза с душистым розовым цветком".

Линней оставил родовые названия. Названия видов предложил давать словами (чаще всего прилагательными), обозначающими признаки данного растения или животного. Название растений или животных состояло теперь из 2-х слов: на первом месте стояло родовое название (существительное), на втором месте - видовое название (обычно прилагательное). Например, шиповник Линней назвал по-латыни Rosа canina L (Роза собачья). L означало имя автора, давшего название данному виду. В данном случае Линней.

Сама идея двойных названий была предложена Каспаром Баугином, т.е. за 100 лет до Линнея, но осуществил ее только Линней.

Линней создал науку ботанику на месте бывшего хаоса.

а) Провел огромную реформу в ботаническом языке. В книге "Основы ботаники" он приводит около 1000 ботанических терминов, понятно объяснив, где и как употреблять каждый из них. По сути дела, Линней изобрел, хотя и с учетом прежней терминологии, новый язык для естествознания.

б) Работал над вопросами биологии растений. Достаточно вспомнить "Календарь флоры",

"Часы флоры", "Сон растений". Первым предложил вести фенологические наблюдения для определения лучших сроков работ для сельскохозяйственных растений.

в) Написал несколько больших учебников и учебных руководств по ботанике.

Система Линнея вызвала громадный интерес к исследованию и описанию растений и животных. Благодаря этому, число известных видов растений увеличилось с 7000 до 10000 за несколько десятилетий. Сам Линней открыл и описал около 1,5 тысяч видов растений, около 2000 видов насекомых.

Линией пробудил интерес к изучению биологии. Многие знаменитые ученые, философы, писатели заинтересовались изучением природы благодаря знакомству, с произведениями К. Линнея. Гете говорил: "После Шекспира и Спинозы самое сильное впечатление имел на меня Линней".

Несмотря на то, что Карл Линней был креационистом, разработанная им система живой

природы была построена по принципу сходства, имела иерархическую структуру и наводила на мысль о родстве между близкими видами живых организмов. Анализируя эти факты, учёные приходили к выводу об изменяемости видов. Авторы этих представлений рассматривали изменение видов во времени как результат развёртывания (от лат. “эвольво” - развертываю) некого предварительного замысла Творца, заранее составленной программы в ходе исторического развития. Эта точка зрения получила название эволюционистской. Такие взгляды высказывали в 18 в. и в начале 19 в. Ж.Бюффон, В.Гёте, К.Бэр, Эразм Дарвин – дед Ч.Дарвина. Но ни один из них не предложил удовлетворительного пояснения, почему и как менялись виды.

Эволюционное учение Ж.Б. Ламарка.

Первая целостная концепция эволюции была высказана французским естествоиспытателем Жаном Батистом Пьером Антуаном де Монье шевалье де Ламарком (1744-1829).

Ламарк был деистом и считал, что творец создал материю к законы ее движения, на этом прекратилась творческая деятельность творца, а все дальнейшее развитие природы происходило соответственно ее законам. Ламарк полагал, что наиболее примитивные и простые организмы возникают путем самозарождения, причем такое самозарождение многократно происходило в далеком прошлом, происходит в настоящее время и будет происходить в будущем. Организмы, по мнению Ламарка, могли возникнуть из неживой материи под действием света, тепла, электричества.

После своего появления примитивные живые организмы не остаются неизменными. Они изменяются под влиянием внешней среды, приспосабливаясь к ней. В результате такого изменения живые организмы с течением времени в длинном ряду последовательных поколений постепенно совершенствуются, становясь все более и более сложными и высокоорганизованными. Вследствие этого, чем больше времени проходит с момента появления путем самозарождения определенной формы, тем более совершенными и сложноорганизованными оказываются ее современные потомки. Наиболее примитивные современные живые организмы по его мнению, возникли совсем недавно и просто еще не успели в результате постепенного усложнения стать более совершенными и высокоорганизованными. Все эти изменения происходят в течение длительного промежутка времени, поэтому незаметны. Но увлеченный отрицанием постоянства видов, Ламарк начинает представлять живую природу как непрерывные ряды изменяющихся особей, виды считает воображаемой единицей классификации удобной для номенклатуры организмов, а в природе существуют только особи. Вид постоянно изменяется, а поэтому не существует – пишет он в “Философии зоологии” (1809 г.).Ступенчатый характер усложнения организация живых существ Ламарк назвал градацией. Ещё один новый термин.

Градация (лат. восхождение) – повышение организации живых существ от низшей ступени к высшей в процессе эволюции.

Движущие силы эволюции по Ламарку .

Внутреннее стремление к прогрессу , т. е. каждое живое существо обладает врожденным внутренним стремлением к усложнению и усовершенствованию своей организации, это свойство заложено в них от самого начала природы.

Влияние внешней среды , благодаря которому в пределах одной и той же ступени организации образуются различные виды, приспособленные к условиям жизни в окружающей среде.

Любое изменение во внешней среде вызывает у организмов только полезные изменения признаков, передающихся по наследству как врожденные свойства и только адекватные изменения , т. е. такие, которые соответствуют изменившимся условиям.

У растений, низших животных причиной непрерывного усложнения и усовершенствования является прямое воздействие внешней среды , вызывающие изменения, обеспечивающие более совершенное приспособление к этим условиям. Ламарк приводит такие примеры. Если весна была очень сухой, то луговые травы плохо растут; весна с чередованием теплых и дождливых дней вызывает буйный рост тех же трав. Попадая из естественных условий в сады, растения сильно изменяются: одни теряют шипы и колючки, у других изменяется форма стебля, деревянистый стебель растений жарких стран становится у нас травянистым в условиях умеренного климата.

На высших животных внешняя среда действует косвенным путем с участием нервной системы. Изменилась внешняя среда – и у животных появляются новые потребности. Если новые условия действуют длительно, то животные приобретают соответствующие привычки. При этом одни органы упражняются больше, другие меньше или совсем бездействуют. Орган, усиленно действующий, развивается сильнее, становится крепче, а орган, мало применяемый в течение длительного времени, постепенно атрофируется.

Образование плавательной перепонки между пальцами у водоплавающих птиц Ламарк объяснял растягиванием кожи; отсутствие ног у змей объясняется привычкой вытягивать тело при ползании по земле, не употребляя конечностей; длинные передние ноги у жирафа – постоянными усилиями животного дотянуться до листьев на деревьях.

Ж.Б. Ламарк допускал также, что стремление, желание животного ведет к усиленному притоку крови и других "флюидов" к той части тела, которой направлено это стремление, что вызывает усиленный рост данной части тела, передаваемый затем по наследству.

Ламарк первым применял термины "родство", "родственные связи" для обозначения единства происхождения живых существ.

Он совершенно правильно считал, что условия среды оказывают важное влияние на ход эволюционного процесса.

Ламарк был одним из первых, кто верно оценил значение времени в процессе эволюции и отметил чрезвычайную длительность развития жизни на земле.

Представления Ламарка о разветвлении "лестницы существ", непрямолинейном характере эволюции подготовило почву для представления о "родословных древах", развитых в 60-х годах XIX в.

Ж.Б.Ламарк развивал гипотезу о естественном происхождении человека предполагал, что предками человека являлись обезьяны которые перешли к наземному образу жизни и хождению по земле от лазанья по деревьям. Эта группа (порода) в течение ряда поколений пользовалась для ходьбы задними конечностями и в конце концов из четверорукой стала двурукой. Если же эта порода перестала пользоваться челюстями для разрывания добычи, а стала пережевывать ее, это могло привести к уменьшению размеров челюсти. Такая наиболее развитая порода завладела на земле всеми удобными местами, вытеснив менее развитые породы. Особи этой господствовавшей породы постепенно накапливали представления об окружающем мире, у них появилась потребность в передаче этих представлений себе подобным, что привело к развитию различных жестов, а затем и речи. Ламарк указал на важную роль руки в становлении человека.

Он пытался объяснить происхождение домашних животных и культурных растений. Ламарк говорил, что предки домашних животных и культурных растений были взяты человеком из дикой природы, но домашнее содержание, перемена питания и скрещивание сделали эти формы неузнаваемыми по сравнению с дикими формами.

Эволюционное учение Ч.Дарвина.

2. Ч.Дарвин о виде.

Вид существует и изменяется

Движущие силы эволюции по Ч.Дарвину .

  • Наследственность.
  • Изменчивость.
  • Естественный отбор на основе борьбы за существование.

3. Задание на дом. Параграфы 41, 42 до стэ.

4. Закрепление.

  • Что думал Аристотель об эволюции живых организмов?
  • Почему Карла Линнея называют провозвестником эволюционизма?
  • Почему эволюционное учение Ж.Б. Ламарка не было признано современниками?
  • Что Вы знаете об эволюционном учении Ч.Дарвина?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Гуманитарный техникум экономики и права

Контрольная работа

Москва 2009

Введение

Масштабы геологического времени

Основные подразделения геологической истории Земли

Зарождение и развитие эволюционной идеи

Эволюция одноклеточных организмов

Возникновение и развитие многоклеточной организации

Эволюция растительного мира

Эволюция животного мира

Человеческий фактор

Заключение

Список использованной литературы

Введение

Эволюционное развитие организмов исследуется целым рядом наук, рассматривающих разные аспекты этой фундаментальной проблемы естествознания. Ископаемые остатки животных и растений существовавших на Земле в прошедшие геологические эпохи, изучает палеонтология, которую и следует поставить на первое место среди наук, непосредственно связанных с исследованием эволюции органического мира. Изучая остатки древних форм и сопоставляя их с ныне живущими организмами, палеонтологи реконструируют облик, образ жизни и родственные связи вымерших животных и растений, определяют время их существования и на этой основе воссоздают филогенез -- историческую преемственность разных групп организмов, их эволюционную историю. Однако в решении этих сложных проблем палеонтология должна опираться на данные и выводы многих других наук, относящихся к кругу биологических, геологических и географических дисциплин (сама палеонтология, изучая ископаемые остатки организмов, находится как бы на стыке биологии и геологии). Для понимания условий жизни древних организмов, определения времени их существования и закономерностей перехода их остатков в ископаемое состояние палеонтология использует данные таких наук, как историческая геология, стратиграфия, палеогеография, палеоклиматология и др. С другой стороны, для анализа строения, физиологии, образа жизни и эволюции вымерших форм необходимо опираться на детальное знание соответствующих сторон организации и биологии ныне существующих организмов. Такое знание дают, прежде всего, работы в области сравнительной анатомии. Одной из основных задач сравнительной анатомии является установление гомологии органов и структур у разных видов. Под гомологией понимается сходство, основанное на родстве; наличие гомологичных органов доказывает прямые родственные связи обладающих ими организмов (как предков и потомков или как потомков общих предков). Гомологичные органы состоят из сходных элементов, развиваются из сходных эмбриональных зачатков и занимают сходное положение в организме. Развивающаяся ныне функциональная анатомия, а также сравнительная физиология дают возможность подойти к пониманию функционирования органов у вымерших животных. В анализе строения, жизнедеятельности и условий существования вымерших организмов ученые опираются на принцип актуализма, выдвинутый геологом Д. Геттоном и глубоко разработанный одним из крупнейших геологов XIX в. -- Ч. Лайелем. Согласно принципу актуализма, закономерности и взаимосвязи, наблюдаемые в явлениях и объектах неорганического и органического мира в дате время, действовали и в прошлом (а отсюда «настоящее есть ключ к познанию прошлого»). Конечно, этот принцип является допущением, но, вероятно, он верен в большинстве случаев (хотя всегда нужно принимать во внимание возможность какого-то своеобразия в протекании тех или иных процессов в прошлом по сравнению с современностью). Палеонтологическая летопись, представленная ископаемыми остатками вымерших организмов, имеет пробелы, иногда очень крупные, обусловленные специфичностью условий захоронения остатков организмов и крайней редкостью совпадения всех необходимых для этого факторов. Для воссоздания филогенеза организмов во всей полноте, для реконструкции многочисленных «недостающих звеньев» па родословном древе (графическом изображении филогенеза) чисто палеонтологические данные и методы оказываются во многих случаях недостаточными. Здесь приходит на помощь так называемый метод тройного параллелизма, введенный в науку известным немецким ученым Э. Геккелем и основанный на сопоставлении палеонтологических, сравнительно-анатомических и эмбриологических данных. Геккель исходил из сформулированного им «основного биогенетического закона», гласящего, что онтогенез (индивидуальное развитие организма) есть сжатое и сокращенное повторение филогенеза. Следовательно, изучение индивидуального развития современных организмов позволяет в какой-то мере судить о ходе эволюционных преобразований их далеких предков, в том числе и не сохранившихся в палеонтологической летописи. Позднее А.Н. Северцов в своей теории филэмбриогенезов показал, что соотношение онтогенеза и филогенеза гораздо сложнее, чем считал Э. Геккель. В действительности не филогенез творит индивидуальное развитие (новые эволюционные приобретения удлиняют онтогенез, прибавляя новые стадии), как полагал Геккель, а, наоборот, наследственные изменения хода онтогенеза приводят к эволюционным перестройкам («филогенез есть эволюция онтогенеза»). Лишь в некоторых частных случаях, когда эволюционная перестройка какого-либо органа происходит посредством изменения поздних стадий его индивидуального развития, т. е. новые признаки формируются в конце онтогенеза (такой способ эволюционной перестройки онтогенеза Северцов назвал анаболией), действительно наблюдается такое соотношение между онтогенезом и филогенезом, которое описывается биогенетическим законом Геккеля. Только в этих случаях можно привлекать эмбриологические данные для анализа филогенеза. Сам А.Н. Северцов дал интересные примеры реконструкции гипотетических «недостающих звеньев» в филогенетическом древе. Изучение онтогенезов современных организмов имеет еще и другое, не менее важное для анализа хода филогенеза значение: оно позволяет выяснить, какие изменения онтогенеза, «творящие эволюцию», возможны, а какие -- нет, что дает ключ к пониманию конкретных эволюционных перестроек. Для понимания сущности эволюционного процесса, для причинного анализа хода филогенеза самое первостепенное значение имеют выводы эволюционистики -- науки, называемой также теорией эволюции или дарвинизмом, по имени великого создателя теории естественного отбора Ч. Дарвина. Эволюционистика, изучающая сущность, механизмы, общие закономерности и направления эволюционного процесса, является теоретической базой всей современной биологии. По сути дела, эволюция организмов представляет собой форму существования живой материи во времени, и все современные проявления жизни, на любом уровне организации живой материи, могут быть поняты лишь с учетом эволюционной предыстории. Тем в большей мере важны основные положения теории эволюции для изучения филогенеза организмов. Перечисленные науки отнюдь не исчерпывают перечень научных дисциплин, причастных к изучению и анализу развития жизни на Земле в прошедшие геологические эпохи. Для понимания видовой принадлежности ископаемых остатков и преобразований видов организмов во времени чрезвычайно важны выводы систематики; для анализа смены фаун и флор в геологическом прошлом -- данные биогеографии. Особое место занимают вопросы происхождения человека и эволюции его ближайших предков, имеющей некоторые специфические особенности по сравнению с эволюцией других высших животных, благодаря развитию трудовой деятельности и социальности.

Масштабы геологического времени

Изучая эволюцию организмов, необходимо иметь представление о ее ходе во времени, о продолжительности тех или иных ее этапов. Историческая последовательность образования осадочных пород, т. е. их относительный возраст, в данном районе устанавливается сравнительно просто: породы, возникшие позднее, отлагались поверх более ранних пластов. Соответствие относительного возраста пластов осадочных пород в разных регионах можно определить, сопоставляя сохранившиеся в них ископаемые организмы (палеонтологический метод, основы которого были заложены в конце XVIII -- начале XIX в. работами английского геолога У. Смита). Обычно среди ископаемых организмов, характерных для каждой эпохи, удается выделить несколько наиболее обычных, многочисленных и широко распространенных видов} такие виды получили название руководящих ископаемых. Как правило, абсолютный возраст осадочных пород, т. е. промежуток времени, прошедший со времени их образования, непосредственно установить нельзя. Информация для определения абсолютного возраста содержится в изверженных (вулканических) породах, которые возникают из остывающей магмы. Абсолютный возраст изверженных пород можно определить по содержанию в них радиоактивных элементов и продуктов их распада. Радиоактивный распад начинается в изверженных породах с момента их кристаллизации из расплавов магмы и продолжается с постоянной скоростью до тех пор, пока все запасы радиоактивных элементов не будут исчерпаны. Поэтому, определив содержание в горной породе того или иного радиоактивного элемента и продуктов его распада и зная скорость распада, можно достаточно точно (с возможностью ошибки около 5%) вычислить абсолютный возраст данной породы. Для осадочных пород приходится принимать приблизительный возраст по отношению к абсолютному возрасту слоев вулканических пород. Длительное и кропотливое изучение относительного и абсолютного возраста горных пород в разных регионах земного шара, потребовавшее напряженной работы нескольких поколений геологов и палеонтологов, позволило наметить основные вехи геологической истории Земли. Границы между этими подразделениями соответствуют разного рода изменениям геологического и биологического (палеонтологического) характера. Это могут быть изменения режима осадконакопления в водоемах, приводящие к формированию иных типов осадочных пород, усиление вулканизма и горообразовательные процессы, вторжение моря (морская трансгрессия) благодаря опусканию значительных участков континентальной коры или повышению уровня океана, существенные изменения фауны и флоры. Поскольку подобные события происходили в истории Земли нерегулярно, продолжительность различных эпох, периодов и эр различна. Обращает на себя внимание огромная длительность древнейших геологических эр (археозойской и протерозойской), которые к тому же не разделены на меньшие временные промежутки (во всяком случае, нет еще общепринятого подрааделения). Это обусловлено в первую очередь самим фактором времени -- древностью отложений археозоя и протерозоя, подвергшихся за свою длительную историю значительному метаморфизму и разрушению, стершим существовавшие когда-то вехи развития Земли и жизни. Отложения археойской и протерозойской эр содержат чрезвычайно мало ископаемых остатков организмов; по этому признаку археозой и протерозой объединяют под названием «криптозой» (этап скрытой жизни) противопоставляя объединению трех последующих эр -- «фанерозой» (этап явной, наблюдаемой жизни). Возраст Земли определяется различными учеными по-разному, но можно указать на приближенную цифру 5 млрд. лет.

Развитие жизни в криптозое

Эры, относящиеся к криптозою, -- археозойская и протерозойская--вместе продолжались более 3,4 млрд. лет; три эры фанерозоя -- 570 млн. лет, т. о. криптозой составляет не менее 7/8 всей геологической истории. Однако в отложениях криптозоя сохранилось чрезвычайно мало ископаемых остатков организмов, поэтому представления ученых о первых этапах развития жизни в течение этих огромных промежутков времени в значительной степени гипотетичны.

Отложения Криптозоя

Древнейшие остатки организмов были найдены в осадочных толщах Родезии, имеющих возраст 2,9--3,2 млрд. лет. Там обнаружены следы жизнедеятельности водорослей (вероятно, сине-зеленых), что убедительно свидетельствует, что около 3 млрд. лет назад на Земле уже существовали фотосинтезирующие организмы -- водоросли. Очевидно, появление жизни на Земле должно было произойти значительно раньше,-- может быть, 3,5-- 4 млрд. лет назад. Наиболее известна среднепротерозойская флора (нитчатые формы длиной до нескольких сотен микрометров и толщиной 0,6--16 мкм, имеющие различное строение, одноклеточные микроорганизмы (Рис.1), диаметром 1--16 мкм, также различного строения), остатки которой были обнаружены в Канаде -- в кремнистых сланцах на северном берегу озера Верхнего. Возраст этих отложений составляет около 1,9 млрд. лет.

В осадочных породах, образовавшихся в промежутке времени между 2 и 1 млрд. лет назад, часто встречаются строматолиты, что говорит о широком распространении и активной фотосинтезирующей и рифостроительной деятельности сине-зеленых водорослей в этот период.

Следующий важнейший рубеж в эволюции жизни документируется рядом находок ископаемых остатков в отложениях, имеющих возраст 0,9--1,3 млрд. лет, среди которых найдены прекрасной сохранности остатки одноклеточных организмов размером 8--12 мкм, в которых удалось различить внутриклеточную структуру, похожую на ядро; обнаружены также стадии деления одного из видов этих одноклеточных организмов, напоминающие стадии митоза -- способа деления эукариотических (т. е. имеющих ядро) клеток.

Если интерпретация описанных ископаемых остатков правильна, это означает, что около 1,6--1,35 млрд. лет назад эволюция организмов прошла важнейший рубеж -- был достигнут уровень организации эукариот.

Первые следы жизнедеятельности червеобразных многоклеточных животных известны из позднерифейских отложений. В вендское время (650--570 млн. лет назад) существовали уже разнообразные животные, вероятно, принадлежавшие к различным типам. Немногочисленные отпечатки мягкотелых вендских животных известны из разных районов земного шара. Ряд интересных находок был сделан в позднепротерозойских отложениях на территории СССР.

Наиболее известна богатая позднепротерозойская ископаемая фауна, обнаруженная Р. Сприггом в 1947 г. в Центральной Австралии. Исследовавший эту уникальную фауну М. Глесснер считает, что она включает примерно три десятка видов очень разнообразных многоклеточных животных, относящихся к разным типам (Рис. 2). Большинство форм принадлежит, вероятно, к кишечно-полостным. Это медузоподобные организмы, вероятно «парившие» в толще воды, и прикрепленные к морскому дну полипоидные формы, одиночные или колониальные, напоминающие современных альционарий, или морские перья. Замечательно, что все они, как и другие животные эдиакарской фауны, лишены твердого скелета.

Кроме кишечно-полостных, в кварцитах Паунд, вмещающих эдиакарскую фауну, найдены останки червеобразных животных, причисляемых к плоским и кольчатым червям. Некоторые виды организмов интерпретируются как возможные предки членистоногих. Наконец, имеется целый ряд ископаемых остатков неизвестной таксономической принадлежности. Это указывает на огромное распространение фауны многоклеточных мягкотелых животных в вендское время,

Поскольку вендская фауна столь разнообразна и включает довольно высокоорганизованных животных, очевидно, что до ее возникновения эволюция продолжалась уже достаточно долго. Вероятно, многоклеточные животные появились значительно раньше -- где-то в промежутке 700--900 млн. лет назад.

Резкое увеличение богатства ископаемой фауны

Граница между протерозойской и палеозойской эрами (т. е. между криптозоем и фанерозоем) отмечается поразительным изменением в составе и богатстве ископаемой фауны. Внезапно (другого слова здесь, пожалуй, и не подберешь) после толщ верхнего протерозоя, почти лишенных следов жизни, в осадочных породах кембрия (первого периода палеозойской эры), начиная с самых нижних горизонтов, появляется огромное разнообразие и обилие остатков ископаемых организмов. Среди них остатки губок, плеченогих, моллюсков, представителей вымершего типа археоциат, членистоногих и других групп. К концу кембрия появляются почти все известные типы многоклеточных животных. Этот внезапный «взрыв формообразования» на границе протерозоя и палеозоя -- одно из самых загадочных, до сих пор полностью не разгаданных, событий в истории жизни на Земле. Благодаря этому начало кембрийского периода является столь заметной вехой, что нередко все предшествующее время в геологической истории (т.е. весь криптозой) именуют "докембрием.

Вероятно, обособление всех основных типов животных произошло в верхнем протерозое, в промежутке времени 600--800 млн. лет назад. Примитивные представители всех групп многоклеточных животных были небольшими лишенными скелета организмами. Продолжавшееся накопление кислорода в атмосфере и увеличение мощности озонового экрана к концу протерозоя позволили животным, как указано выше, увеличить размеры тела и приобрести скелет. Организмы получили возможность широко расселиться на малых глубинах различных водоемов, что повело к значительному повышению разнообразия форм жизни.

Зарождение и развитие эволюционной идеи

Первые проблески эволюционной мысли зарождаются в недрах диалектической натурфилософии античного времени, рассматривавшей мир в бесконечном движении, постоянном самообновлении на основе всеобщей связи и взаимодействия явлений и борьбы противоположностей.

Выразителем стихийного диалектического взгляда на природу был Гераклит, эфесский мыслитель (около 530-470 гг. до н. э.) его высказывания о том, что в природе все течет все изменяется в результате взаимопревращений первоэлементов космоса - огня, воды, воздуха, земли, содержали в зародыше идею всеобщего, не имеющего начала и конца развития материи.

Представителями механистического материализма были философы более позднего периода (460-370 гг. до н. э.). По Демокриту мир состоял из бесчисленного множества неделимых атомов, расположенных в бесконечном пространстве. Атомы находятся в постоянном процессе случайного соединения и разъединения, в случайном движении и различны по величине, массе и форме; тела, появившиеся вследствие скопления атомов, могут быть также различными. Более легкие из них поднялись вверх и образовали огонь и небо, более тяжелые, опустившись, образовали воду и землю, в которых и зародились различные живые существа: рыбы, наземные животные, птицы.

Механизм происхождения живых существ первым пытался истолковать древнегреческий философ Эмпедокл (490-430 гг. до н. э.). Развивая мысль Гераклита о первичных элементах, он утверждал, что их смешение создает множество комбинаций, одни из которых - наименее удачные - разрушаются, а другие - гармонирующие сочетания - сохраняются. Комбинации этих элементов и создают органы животных. Соединение органов друг с другом порождает целостные организмы. Примечательной была мысль, что сохранились в природе только жизнеспособные варианты из множества неудачных комбинаций.

Зарождение биологии как науки связано с деятельностью великого мыслителя из Греции Аристотеля (387-322 гг. до н. э.). В своих трудах он изложил принципы классификации животных, провел сравнение различных животных по их строению, заложил основы античной эмбриологии. Он обратил внимание на то, что у разных организмов эмбриогенез (развитие эмбриона) проходит через последовательный ряд: вначале закладываются наиболее общие признаки, затем видовые и, наконец, индивидуальные. Обнаружив большое сходство начальных стадий в эмбриогенезе представителей разных групп животных, Аристотель пришел к мысли о возможности единства их происхождения. Этим выводом Аристотель предвосхитил идеи зародышевого сходства и эпигенеза (эмбриональных новообразований), выдвинуты и экспериментально обоснованны в середине XVIII в.

Последующий период, вплоть до XVI в., для развития эволюционной мысли почти ничего не дал. В эпоху Возрождения резко усиливается интерес к античной науке и начинается накопление знаний, сыгравших значительную роль в становлении эволюционной идеи.

Исключительной заслугой учения Дарвина явилось то, что оно дало научное, материалистическое объяснение возникновению высших животных и растений путем последовательного развития живого мира, что оно привлекло для разрешения биологических проблем исторический метод исследования. Однако к самой проблеме происхождения жизни у многих естествоиспытателей и после Дарвина сохранился прежний метафизический подход. Широко распространенный в научных кругах Америки и Западной Европы менделизм-морганизм выдвинул положение, согласно которому наследственностью и всеми другими свойствами жизни обладают частицы особенного генного вещества, сконцентрированного в хромосомах клеточного ядра. Эти частицы будто бы когда-то внезапно возникли на Земле и сохранили свое жизнеопределяющее строение в основном неизменным в течение всего развития жизни. Таким образом, проблема происхождения жизни, с точки зрения менделистов-морганистов, сводится к вопросу, как могла сразу внезапно возникнуть наделенная всеми свойствами жизни частица генного вещества.

Жизнь как особая форма существования материи характеризуется двумя отличительными свойствами -- самовоспроизведением и обменом веществ с окружающей средой. На свойствах саморепродукции и обмена веществ строятся все современные гипотезы возникновения жизни. Наиболее широко признанные гипотезы коацерватная и генетическая.

Коацерватная гипотеза. В 1924 г. А.И. Опарин впервые сформулировал основные положения концепции предбиологической эволюции и затем, опираясь на эксперименты Бунгенберга де Йонга, развил эти положения в коацерватной гипотезе происхождения жизни. Основу гипотезы составляет утверждение, что начальные этапы биогенеза были связаны с формированием белковых структур.

Первые белковые структуры (протобионты, по терминологии Опарина) появились в период, когда молекулы белков отграничивались от окружающей среды мембраной. Эти структуры могли возникнуть из первичного «бульона» благодаря коацервации -- самопроизвольному разделению водного раствора полимеров на фазы с различной их концентрацией. Процесс коацервации приводил к образованию микроскопических капелек с высокой концентрацией полимеров. Часть этих капелек поглощали из среды низкомолекулярные соединения: аминокислоты, глюкозу, примитивные катализаторы. Взаимодействие молекулярного субстрата и катализаторов уже означало возникновение простейшего метаболизма внутри протобионтов.

Обладавшие метаболизмом капельки включали в себя из окружающей среды новые соединения и увеличивались в объеме. Когда коацерваты достигали размера, максимально допустимого в данных физических условиях, они распадались на более мелкие капельки, например, под действием волн, как это происходит при встряхивании сосуда с эмульсией масла в воде. Мелкие капельки вновь продолжали расти и затем образовывать новые поколения коацерватов.

Постепенное усложнение протобионтов осуществлялось отбором таких коацерватных капель, которые обладали преимуществом в лучшем использовании вещества и энергии среды. Отбор как основная причина совершенствования коацерватов до первичных живых существ -- центральное положение в гипотезе Опарина.

Генетическая гипотеза. Согласно этой гипотезе, вначале возникли нуклеиновые кислоты как матричная основа синтеза белков. Впервые ее выдвинул в 1929 г. Г. Мёллер.

Экспериментально доказано, что несложные нуклеиновые кислоты могут реплицироваться и без ферментов. Синтез белков на рибосомах идет при участии транспортной (т-РНК) и рибосомной РНК (р-РНК). Они способны строить не просто случайные сочетания аминокислот, а упорядоченные полимеры белков. Возможно, первичные рибосомы состояли только из РНК. Такие безбелковые рибосомы могли синтезировать упорядоченные пептиды при участии молекул т-РНК, которые связывались с р-РНК через спаривание оснований.

На следующей стадии химической эволюции появились матрицы, определявшие последовательность молекул т-РНК, а тем самым и последовательность аминокислот, которые связываются молекулами т-РНК.

Способность нуклеиновых кислот служить матрицами при образовании комплементарных цепей (например, синтез и-РНК на ДНК) -- наиболее убедительный аргумент в пользу представлений о ведущем значении в процессе биогенеза наследственного аппарата и, следовательно, в пользу генетической гипотезы происхождения жизни.

Основные этапы биогенеза. Процесс биогенеза включал три основных этапа: возникновение органических веществ, появление сложных полимеров (нуклеиновых кислот, белков, полисахаридов), образование первичных живых организмов.

Первый этап -- возникновение органических веществ. Уже в период формирования Земли образовался значительный запас абиогенных органических соединений. Исходными для их синтеза были газообразные продукты докислородной атмосферы и гидросферы (СН4 , СО2 , H 2 О, Н2 , NH3 , NО2). Именно эти продукты используются и в искусственном синтезе органических соединений, составляющих биохимическую основу жизни.

Экспериментальный синтез белковых компонентов -- аминокислот в попытках создать живое «в пробирке» начался с работ С. Миллера (1951--1957). С. Миллер провел серию опытов по воздействию искровыми электрическими разрядами на смесь газов СН4 , NH3 , H2 и паров воды, в результате чего обнаружил аминокислоты аспарагин, глицин, глутамин. Полученные Миллером данные подтвердили советские и зарубежные ученые.

Наряду с синтезом белковых компонентов экспериментально синтезированы нуклеиновые компоненты -- пуриновые и пиримидиновые основания и сахара. При умеренном нагревании смеси цианистого водорода, аммиака и воды Д. Оро получил аденин. Он же синтезировал урацил при взаимодействии аммиачного раствора мочевины с соединениями, возникающими из простых газов под влиянием электрических разрядов. Из смеси метана, аммиака и воды под действием ионизирующей радиации образовывались углеводные компоненты нуклеотидов -- рибоза и дезоксирибоза. Опыты с применением ультрафиолетового облучения показали возможность синтеза нуклеотидов из смеси пуриновых оснований, рибозы или дезоксирибозы и полифосфатов. Нуклеотиды, как известно, являются мономерами нуклеиновых кислот.

Второй этап -- образование сложных полимеров. Этот этап возникновения жизни характеризовался абиогенным синтезом полимеров, подобных нуклеиновым кислотам и белкам.

С. Акабюри впервые синтезировал полимеры протобелков со случайным расположением аминокислотных остатков. Затем на куске вулканической лавы при нагревании смеси аминокислот до 100°С, С. Фоке получил полимер с молекулярной массой до 10000, содержащий все включенные в опыт типичные для белков аминокислоты. Этот полимер Фоке назвал протеиноидом.

Искусственно созданным протеиноидам были характерны свойства, присущие белкам современных организмов: повторяющаяся последовательность аминокислотных остатков в первичной структуре и заметная ферментативная активность.

Полимеры из нуклеотидов, подобные нуклеиновым кислотам организмов, были синтезированы в лабораторных условиях, не воспроизводимых в природе. Г. Корнберг показал возможность синтеза нуклеиновых кислот in vitro; для этого требовались специфические ферменты, которые не могли присутствовать в условиях примитивной Земли.

В начальных процессах биогенеза большое значение имеет химический отбор, который является фактором синтеза простых и сложных соединений. Одной из предпосылок химического синтеза выступает способность атомов и молекул к избирательности при их взаимодействиях в реакциях. Например, галоген хлор или неорганические кислоты предпочитают соединяться с легкими металлами. Свойство избирательности определяет способность молекул к самосборке, что было показано С. Фоксом в сложных макромолекул характеризуется строгой упорядоченностью, как по числу мономеров, так и по их пространственному расположению.

Способность макромолекул к самосборке А.И. Опарин рассматривал в качестве доказательства выдвинутого им положения, что белковые молекулы коацерватов могли синтезироваться и без матричного кода.

Третий этап -- появление первичных живых организмов. От простых углеродистых соединений химическая эволюция привела к высокополимерным молекулам, которые составили основу формирования примитивных живых существ. Переход от химической эволюции к биологической характеризовался появлением новых качеств, отсутствующих на химическом уровне развития материи. Главными из них были внутренняя организация протобионтов, приспособленная к окружающей среде благодаря устойчивому обмену веществ и энергии, наследование этой организации на основе репликации генетического аппарата (матричного кода).

А.И. Опарин с сотрудниками показал, что устойчивым обменом веществ с окружающей средой обладают коацерваты. При определенных условиях концентрированные водные растворы полипептидов, полисахаридов и РНК образуют коацерватные капельки объемом от 10 -7 до 10 -6 см 3, которые имеют границу раздела с водной средой. Эти капельки обладают способностью ассимилировать из окружающей среды вещества и синтезировать из них новые соединения.

Так, коацерваты, содержащие фермент гликогенфосфорилазу, впитывали из раствора глюкозо-1-фосфат и синтезировали полимер, сходный с крахмалом.

Подобные коацерватам самоорганизующиеся структуры описал С. Фоке и назвал их микросферами. При охлаждении нагретых концентрированных растворов протеиноидов самопроизвольно возникали сферические капельки диаметром около 2 мкм. При определенных значениях рН среды микросферы образовывали двухслойную оболочку, напоминающую мембраны обычных клеток. Они обладали также способностью делиться почкованием.

Хотя микросферы не содержат нуклеиновых кислот и в них отсутствует ярко выраженный метаболизм, они рассматриваются в качестве возможной модели первых самоорганизующихся структур, напоминающих примитивные клетки.

Клетки -- основная элементарная единица жизни, способная к размножению, в ней протекают все главные обменные процессы (биосинтез, энергетический обмен и др.). Поэтому возникновение клеточной организации означало появление подлинной жизни и начало биологической эволюции.

Эволюция одноклеточных организмов

До 1950-х годов не удавалось обнаружить следы докембрийской жизни на уровне одноклеточных организмов, поскольку микроскопические остатки этих существ невозможно выявить обычными методами палеонтологии. Важную роль в их обнаружении сыграло открытие, сделанное в начале XX в. Ч. Уолкотом. В докембрийских отложениях на западе Северной Америки он нашел слоистые известняковые образования в виде столбов, названные позднее строматолитами. В 1954 г. было установлено, что строматолиты формации Ганфлинт (Канада) образованы остатками бактерий и сине-зеленых водорослей. У берегов Австралии обнаружены и живые строматолиты, состоящие из этих же организмов и очень сходные с ископаемыми докембрийскими строматолитами. К настоящему времени остатки микроорганизмов найдены в десятках строматолитов, а также в глинистых сланцах морских побережий.

Самые ранние из бактерий (прокариоты) существовали уже около 3,5 млрд. лет назад. К настоящему времени сохранились два семейства бактерий: древние, или археобактерии (галофильные, метановые, термофильные), и эубактерии (все остальные). Таким образом, единственными живыми существами на Земле в течение 3 млрд. лет были примитивные микроорганизмы. Возможно, они представляли собой одноклеточные существа, сходные с современными бактериями, например клостридиями, живущими на основе брожения и использования богатых энергией органических соединений, возникающих абиогенно под действием электрических разрядов и ультрафиолетовых лучей. Следовательно, в эту эпоху живые существа были потребителями органических веществ, а не их производителями.

Гигантский шаг на пути эволюции жизни был связан с возникновением основных биохимических процессов обмена -- фотосинтеза и дыхания и с образованием клеточной организации, содержащей ядерный аппарат (эукариоты). Эти «изобретения», сделанные еще на ранних стадиях биологической эволюции, в основных чертах сохранились у современных организмов. Методами молекулярной биологии установлено поразительное единообразие биохимических основ жизни при огромном различии организмов по другим признакам. Белки почти всех живых существ состоят из 20 аминокислот. Нуклеиновые кислоты, кодирующие белки, монтируются из четырех нуклеотидов. Биосинтез белка осуществляется по единообразной схеме, местом их синтеза являются рибосомы, в нем участвуют и-РНК и т-РНК. Подавляющая часть организмов использует энергию окисления, дыхания и гликолиза, которая запасается в АТФ.

Рассмотрим подробнее особенности эволюции на клеточном уровне организации жизни. Наибольшее различие существует не между растениями, грибами и животными, а между организмами, обладающими ядром (эукариоты) и не имеющими его (прокариоты). Последние представлены низшими организмами -- бактериями и сине-зелеными водорослями (цианобактерии, или цианеи), все остальные организмы -- эукариоты, которые сходны между собой по внутриклеточной организации, генетике, биохимии и метаболизму.

Различие между прокариотами и эукариотами заключается еще и в том, что первые могут жить как в бескислородной (облигатные анаэробы), так и в среде с разным содержанием кислорода (факультативные анаэробы и аэробы), в то время как для эукариотов, за немногим исключением, обязателен кислород. Все эти различия имели существенное значение для понимания ранних стадий биологической эволюции.

Сравнение прокариот и эукариот по потребности в кислороде приводит к заключению, что прокариоты возникли в период, когда содержание кислорода в среде изменилось. Ко времени же появления эукариот концентрация кислорода была высокой и относительно постоянной.

Первые фотосинтезирующие организмы появились около 3 млрд. лет назад. Это были анаэробные бактерии, предшественники современных фотосинтезирующих бактерий. Предполагается, что именно они образовали самые древние среди известных строматолитов. Обеднение среды азотистыми органическими соединениями вызывало появление живых существ, способных использовать атмосферный азот. Такими организмами, способными существовать в среде, полностью лишенной органических углеродистых и азотистых соединений, являются фотосинтезирующие азотфиксирующие сине-зеленые водоросли. Эти организмы осуществляли аэробный фотосинтез. Они устойчивы к продуцируемому ими кислороду и могут использовать его для собственного метаболизма. Поскольку сине-зеленые водоросли возникли в период, когда концентрация кислорода в атмосфере колебалась, вполне допустимо, что они -- промежуточные организмы между анаэробами и аэробами.

Предполагается, что фотосинтез, в котором источником атомов водорода для восстановления углекислого газа является сероводород, (кой фотосинтез осуществляют современные зеленые и пурпурные серные бактерии), предшествовал более сложному двустадийному фотосинтезу, при котором атомы водорода извлекаются из молекул воды. Второй тип фотосинтеза характерен для цианей и зеленых растений.

Фотосинтезирующая деятельность первичных одноклеточных имела три последствия, оказавшие решающее влияние на всю дальнейшую эволюцию живого. Во-первых, фотосинтез освободил организмы от конкуренции за природные запасы абиогенных органических соединений, количество которых в среде значительно сократилось. Развившееся посредством фотосинтеза автотрофное питание и запасание питательных готовых веществ в растительных тканях создали затем условия для появления громадного разнообразия автотрофных и гетеротрофных организмов. Во-вторых, фотосинтез обеспечивал насыщение атмосферы достаточным количеством кислорода для возникновения и развития организмов, энергетический обмен которых основан на процессах дыхания. В-третьих, в результате фотосинтеза в верхней части атмосферы образовался озоновый экран, защищающий земную жизнь от губительного ультрафиолетового излучения космоса,

Еще одно существенное отличие прокариот и эукариот заключается в том, что у вторых центральным механизмом обмена является дыхание, у большинства же прокариот энергетический обмен осуществляется в процессах брожения. Сравнение метаболизма прокариот и эукариот приводит к выводу об эволюционной связи между ними. Вероятно, анаэробное брожение возникло на более ранних стадиях эволюции. После появления в атмосфере достаточного количества свободного кислорода аэробный метаболизм оказался намного выгоднее, так как при окислении углеводов в 18 раз увеличивается выход биологически полезной энергии в сравнении с брожением. Таким образом, к анаэробному метаболизму присоединился аэробный способ извлечения энергии одноклеточными организмами.

Когда же появились эукариотические клетки? На этот вопрос нет точного ответа, но значительное количество данных об ископаемых эукариотах позволяет сказать, что их возраст составляет около 1,5 млрд. лет. Относительно того, каким образом возникли эукариоты, существуют две гипотезы.

Одна из них (аутогенная гипотеза) предполагает, что эукариотическая клетка возникла путем дифференциации исходной прокариотической клетки. Вначале развился мембранный комплекс: образовалась наружная клеточная мембрана с впячиваниями внутрь клетки, из которой сформировались отдельные структуры, давшие начало клеточным органоидам. От какой именно группы прокариот возникли эукариоты, сказать невозможно.

Другую гипотезу (симбиотическую) предложила американский ученый Маргулис. В ее обоснование она положила новые открытия, в частности обнаружение у пластид и митохондрий внеядерной ДНК и способности этих органелл к самостоятельному делению. Л. Маргулис предполагает, что эукариотическая клетка возникла вследствие нескольких актов симбиогенеза. Вначале произошло объединение крупной амебовидной прокариотной клетки с мелкими аэробными бактериями, которые превратились в митохондрии. Затем эта симбиотическая прокариотная клетка включила в себя спирохетоподобные бактерии, из которых сформировались кинетосомы, центросомы и жгутики. После обособления ядра в цитоплазме (признак эукариот) клетка с этим набором органелл оказалась исходной для образования царств грибов и животных. Объединение прокариотной клетки с цианеями привело к образованию пластидной клетки, что дало

начало формированию царства растений. Гипотеза Маргулис разделяется не всеми и подвергается критике. Большинство авторов придерживается аутогенной гипотезы, более соответствующей дарвиновским принципам монофилии, дифференциации и усложнения организации в ходе прогрессивной эволюции.

В эволюции одноклеточной организации выделяются промежуточные ступени, связанные с усложнением строения организма, совершенствованием генетического аппарата и способов размножения.

Самая примитивная стадия -- агамная прокариотная -- представлена цианеями и бактериями. Морфология этих организмов наиболее проста в сравнении с другими одноклеточными (простейшими). Однако уже на этой стадии появляется дифференциация на цитоплазму, ядерные элементы, базальные зерна, цитоплазматическую мембрану. У бактерий известен обмен генетическим материалом посредством конъюгации. Большое разнообразие видов бактерий, способность существовать в самых разных условиях среды свидетельствуют о высокой адаптивности их организации.

Следующая стадия -- агамная эукариотная -- характеризуется дальнейшей дифференциацией внутреннего строения с формированием высокоспециализированных органоидов (мембраны, ядро, цитоплазма, рибосомы, митохондрии и др.). Особо существенной здесь была эволюция ядерного аппарата -- образование настоящих хромосом в сравнении с прокариотами, у которых наследственное вещество диффузно распределено по всей клетке. Эта стадия характерна для простейших, прогрессивная эволюция которых шла по пути увеличения числа одинаковых органоидов (полимеризация), увеличения числа хромосом в ядре (полиплоидизация), появления генеративных и вегетативных ядер -- макронуклеуса и микронуклеуса (ядерный дуализм). Среди одноклеточных эукариотных организмов имеется много видов с агамным размножением (голые амебы, раковинные корненожки, жгутиконосцы).

Прогрессивным явлением в филогенезе простейших было возникновение у них полового размножения (гамогонии), которое отличается от обычной конъюгации. У простейших имеется мейоз с двумя делениями и кроссинговером на уровне хроматид, и образуются гаметы с гаплоидным набором хромосом. У некоторых жгутиковых гаметы почти неотличимы от бесполых особей и нет еще разделения на мужские и женские гаметы, т. е. наблюдается изогамия. Постепенно в ходе прогрессивной эволюции происходит переход от изогамии к анизогамии, или разделению генеративных клеток на женские и мужские, и к анизогамной копуляции. При слиянии гамет образуется диплоидная зигота. Следовательно, у простейших наметился переход от агамной эукариотной стадии к зиготной -- начальной стадии ксеногамии (размножение путем перекрестного оплодотворения). Последующее развитие уже многоклеточных организмов шло по пути совершенствования способов ксеногамного размножения.

Возникновение и развитие многоклеточной организации

Следующая после возникновения одноклеточных ступень эволюции заключалась в образовании и прогрессивном развитии многоклеточного организма. Эта ступень отличается большой усложненностью переходных стадий, из которых выделяются колониальная одноклеточная, первично - дифференцированная, централизованно - дифференцированная.

Колониальная одноклеточная стадия считается переходной от одноклеточного организма к многоклеточному и является наиболее простой из всех стадий в эволюции многоклеточной организации.

Недавно обнаружены самые примитивные формы колониальных одноклеточных, стоящих как бы на полпути между одноклеточными организмами и низшими многоклеточными (губками и кишечнополостными). Их выделили в подцарство Меsozoa, однако в эволюции на многоклеточную организацию представителей этого полцарства считают тупиковыми линиями. Большее предпочтение при решении вопроса о происхождении многоклеточности отдается колониальным жгутиконосцам (Gonium, Pandorina, Volvox). Так, колония Gonium состоит из 16 объединенных клеток-жгутиконосцев, однако без всякой специализации их функций как членов колонии, т. е. представляет собой механический конгломерат клеток.

Первично-дифференцированная стадия в эволюции многоклеточной организации характеризуется началом специализации по принцип «разделения труда» у членов колонии. Элементы первичной специализации наблюдаются у колоний Pandorina morum (16 клеток), Eudorina elegans (32 клетки), Volvox globator (тысячи клеток). Специализация у названных организмов сводится к разделению клеток на соматические, осуществляющие функции питания и движения (жгутики), и генеративные (гонидии), служащие для размножения. Здесь наблюдается и выраженная анизогамия. На первично-дифференцированной стадии происходит специализация функций на тканевом, органном и системно-органном уровне. Так, у кишечнополостных уже сформировалась простая нервная система, которая, распространяя импульсы, координирует деятельность двигательных, железистых, стрекательных, репродуктивных клеток. Нервного центра как такового еще нет, но центр координации имеется.

С кишечнополостных начинается развитие централизованно-дифференцированной стадии в эволюции многоклеточной организации. На этой стадии усложнение морфофизиологической структуры идет через усиление тканевой специализации, начиная с возникновения зародышевых листков, детерминирующих морфогенез пищевой, выделительной, генеративной и других систем органов. Возникает хорошо выраженная централизованная нервная система: у беспозвоночных -- ганглиолярная, у позвоночных -- с центральным и периферическим отделами. Одновременно совершенствуются способы полового размножения -- от наружного оплодотворения к внутреннему, от свободной инкубации яиц вне материнского организма к живорождению.

Финалом в эволюции многоклеточной организации животных было появление организмов с поведением «разумного типа». Сюда относятся животные с высокоразвитой условно-рефлекторной деятельностью, способные передавать информацию следующему поколению не только через наследственность, но и надгаметным способом (например, передача опыта молодняку посредством обучения). Заключительным этапом в эволюции централизованно-дифференцированной стадии стало возникновение человека.

Рассмотрим основные этапы эволюции многоклеточных организмов в той последовательности, как она происходила в геологической истории Земли. Всех многоклеточных разделяют на три царства: грибы (Fungi), растения (Metaphyta) и животные (Metazoa). Относительно эволюции грибов известно очень мало, так как палеонтологическая летопись их остается скудной. Два других царства намного богаче представлены ископаемыми остатками, дающими возможность довольно подробно восстановить ход их истории.

Эволюция растительного мира

В протерозойскую эру (около 1 млрд. лет назад) эволюционный ствол древнейших эукариот разделился на несколько ветвей, от которых возникли многоклеточные растения (зеленые, бурые и красные водоросли), а также грибы. Большинство из первичных растений свободно плавало в морской воде (диатомовые, золотистые водоросли), часть прикреплялась ко дну.

Существенным условием дальнейшей эволюции растений было образование почвенного субстрата на поверхности суши в результате взаимодействия бактерий и цианей с минеральными веществами и под влиянием климатических факторов. В конце силурийского периода почвообразовательные процессы подготовили возможность выхода растений на сушу (440 млн. лет назад). Среди растений, первыми освоившими сушу, были псилофиты.

От псилофитов возникли другие группы наземных сосудистых растений: плауны, хвощи, папоротники, размножающиеся спорами и предпочитающие водную среду. Примитивные сообщества этих растений широко распространились в девоне. В этот же период появились и первые голосеменные, возникшие от древних папоротников и унаследовавшие от них внешний древовидный облик. Переход к размножению семенами имел большое преимущество, так как освободил половой процесс от необходимости водной среды (как это наблюдается еще у современных папоротников). Эволюция высших наземных растений шла по пути все большей редукции гаплоидного поколения (гаметофита) и преобладания диплоидного поколения (спорофита).

Значительного разнообразия достигла наземная флора в каменноугольный период. Среди древовидных широко распространялись плаунообразные (лепидодендроны) и сигилляриевые, достигавшие в высоту 30 м и более. В палеозойских лесах богато были представлены древовидные папоротники и хвощеобразные каламиты. Из первичных голосеменных господствовали разнообразные птеридоспермы и кордаиты, напоминавшие стволами хвойных и имевшие длинные лентовидные листья.

Начавшийся в пермский период расцвет голосеменных, в частности хвойных, привел к их господству в мезозойскую эру. К середине пермского периода климат стал засушливее, что во многом отразилось на изменениях в составе флоры. Сошли с арены жизни гигантские папоротники, древовидные плауны, каламиты, и постепенно исчез столь яркий для той эпохи колорит тропических лесов.

Подобные документы

    Масштабы Геологического Времени. Основные Подразделения Геологической Истории Земли. Развитие жизни в криптозое. Жизнь в палеозойской эре. Превосходство Позвоночных Рыб над Членистоногими. Мезозойская эра – век рептилий. Кайнозой – век млекопитающих.

    реферат , добавлен 06.04.2004

    Зарождение и развитие эволюционных идей до середины XIX века. Основные идеи античных натурфилософов. Эволюционное учение Ж.Б. Ламарка. Трансформизм в биологии как предшественник эволюционной теории. Предпосылки и основные положения теории Ч. Дарвина.

    контрольная работа , добавлен 20.08.2015

    Тайна появления жизни на Земле. Эволюция зарождения жизни на Земле и сущность концепций эволюционной химии. Анализ биохимической эволюции теории академика Опарина. Этапы процесса, приведшего к возникновению жизни на Земле. Проблемы в теории эволюции.

    реферат , добавлен 23.03.2012

    История появления, современная концепция и перспективы развития эволюционной теории. Макро и микроэволюция. Общие закономерности эволюции. Основные формы эволюции групп организмов. Филетическая и дивергентная эволюция. Конвергенция и параллелизм.

    курсовая работа , добавлен 16.05.2015

    Становление эволюционной теории, закономерности индивидуального развития организма. Эволюция живых организмов. Теория Ч.Дарвина - наследственность, изменчивость и естественный отбор. Видообразование. Роль генетики в современном эволюционном учении.

    реферат , добавлен 09.10.2008

    Теории возможности и вероятности возникновения жизни на Земле (креационизм, спонтанное и стационарное зарождение жизни, панспермия, биохимическая эволюция). Стадии образования органических молекул. Возникновение живых организмов, образование атмосферы.

    курсовая работа , добавлен 26.05.2013

    Формирование эволюционной биологии. Использование эволюционной парадигмы в биологии в качестве методической основы под влиянием теории Ч. Дарвина. Развитие эволюционных концепций в последарвиновский период. Создание синтетической теории эволюции.

    контрольная работа , добавлен 20.08.2015

    Зарождение и развитие идей гуманизма в странах Западной Европы и России. Жизненный путь ученого Владимира Ивановича Вернадского, основные заслуги в области естествознания. Идеи гуманизма в его работах. Структура научного знания как проявление ноосферы.

    курсовая работа , добавлен 04.05.2014

    Вселенная – весь существующий материальный мир, безграничный во времени и пространстве. Формирование Солнечной системы, возникновение Земли. Звезда как основное вещество Галактики. Особенности реликтового излучения. Зарождение жизни на Земле, ее эволюция.

    контрольная работа , добавлен 11.03.2011

    Образование и зарождение жизни на Земле; влияние геологических процессов на изменение климата и условия существования организмов. Этапы создания типов и классов животных; эволюция "первичного бульона" до современного видового состава органического мира.

специалист

фрилансер

инженер-эколог

Аннотация:

Статья посвящена теориям развития эволюции живых организмов. В ней дается анализ существующих теорий и выдвигается новая консолидированная теория. В статье приведены основные положение и тезисы, высказанные различными учеными от Античности и до наших дней. Всю историю изучения жизни на Земле можно разбить на несколько этапов. Практически в каждом из них содержатся предположения, которые нашли свое подтверждение в современных научных исследованиях. Изучение процесса развития эволюции необходимо для сохранения биоразнообразия, ныне живущих видов, в частности находящихся под угрозой исчезновения.

The article is devoted to theories of development of the evolution of living organisms. It analyses the existing theories and put forward a new consolidated theory. The article contains the main position and theses expressed by various scientists from Antiquity to our days. The whole history of the study of life on Earth can be divided into several stages. Almost each of them contains assumptions that were confirmed in modern scientific studies. Study of the process of development of the evolution of the need for biodiversity conservation, species present, in particular under the threat of disappearance.

Ключевые слова:

естественный отбор; наследование; организмы; приспособление; эволюция

natural selection; inheritance; organisms; adaptation; evolution

УДК: 575.858

Вопросы возникновения и развития жизни на земле интересовали человечество на протяжении всей его истории. Начиная с самых ранних этапов развития человечества, люди пытались объяснить свое появление и появление жизни на земле.

Первые идеи о возникновении и развитии жизни на Земле были связаны с мифами. Однако уже в Античности можно найти первые попытки рационального, небожественного объяснения некоторых природных явлений. Здесь можно привести в качестве примера некоторых ученых.

Анаксимандр считал, что у всего есть одно первоначало - апейрон. Из него появляется все, что есть и будет в этом мире, все живое. В вопросе эволюции Анаксимандр считал, что порождение всего живого обусловлено испаряемой солнцем влагой и поэтому происхождение людей можно объяснить изменением «животных другого вида», напоминающих рыб .И хоть это предположение не верно, в нем есть некоторая истина. Так можно косвенно утверждать, что испаряемая солнцем влага приводит к изменению организмов, поскольку испарение - это уровень влажности, а она является частью климата, который менялся на протяжении истории развития жизни на Земле.

Эмпедокл считал, то в первую очередь из земли проросли растения, потом возникли животные, причем вначале это были головы без шей и туловища, руки без плеч, глаза без лица; эти существа-части соединялись между собой, но сохранялись и размножались лишь жизнеспособные творения (мысль о том, что выживает наиболее приспособленный) . Данная теория полностью не научна, поскольку части организмов никак не могут существовать отдельно от всего организма. В процессе изучения развития жизни на Земле было выявлено, что организм развивается как единое целое.

Демокрит считал, что наземные животные произошли от земноводных, а те в свою очередь самозародились в илу. В этой теории есть верное направление, касающееся происхождения наземных животных от земноводных. Это в отношении эволюции. В отношении же возникновения жизни на Земле была выдвинута теория о самозарождении. Эту теорию продолжали развивать ученые и Возрождения и Нового времени, пока не было установлено, что такое не возможно.

Одним из видных ученых Античности был Аристотель. Среди его трудов можно найти и посвященные развитию жизни. В своем труде «О частях животных» Аристотель приводит опровержение теорий, предложенных Эмпедоклом и Демокритом. В отношении Эмпедокла он пишет, что должно быть какое-то семя, которое наделяет то или иное существо определенными характеристиками и свойствами. А в отношении Демокрита Аристотель приводит пример со статуей, которая не может возникнуть сама по себе .

Таким образом, можно выделить первый этап в развитии эволюционных идей в биологии. Это этап Античности и первого опыта познания мира. На этом этапе делались первые попытки объяснения происхождения жизни и ее развития, не связанные с мифологией. Одни из теорий, например предложенная Эмпедоклом, были полностью опровергнуты. Другие же продолжали существовать еще долгое время, давая толчки к развитию новых идей и теорий.

Следующий этап в развитии эволюционных идей связан с усиливающейся ролью церкви. Этот этап относится к эпохе Средневековья. В это время вся жизнь, весь быт был подчинен церкви, и любое отступление от религиозных догм было недопустимо и каралось.

На данном этапе основной теорией происхождения и развития жизни на Земле была теологическая, божественная. По данной теории считалось, что Бог создал Землю и все живое на ней. Весь процесс описан в Библии. Все иные теории отвергались.

После эпохи средневековья наступают эпохи Возрождения, Нового времени. В это время начинается активное изучение биологии, происхождения жизни. Ученые постепенно отходят от теории божественного сотворения жизни. Крупнейшие ученые-биологи того времени - Линней, Ламарк, Дарвин, Мендель. Рассмотрим основные положения и высказывания о зарождении и развитии жизни на Земле этих ученых.

В своей книге «Философия ботаники» Карл Линней писал: «Все, что встречается в природе принадлежит к элементам и натуралиям. Натуралии принадлежат к трем царствам природы: камней, растений, животных» .

Таким образом, первым основным направлением развития мысли в биологии эпохи Возрождения становится систематика. Если раньше объекты природы изучались по отдельности, давалось только их общее описание, то начиная с Линнея все живо начало подразделяться на класс, отряд, род и вид. Это значительно упростило процесс изучения и способствовало дальнейшему открытию и развитию новых закономерностей организации живой природы.

В противоположность Карлу Линнею, отстаивавшему в своей классификации мысль о постоянстве видов, Бюффон высказывал прогрессивные идеи об изменяемости видов под влиянием условий среды (климата, питания и т. д.). Такое высказывание стало предпосылкой, еще до Дарвина, об изменчивости видов, естественном отборе, а, следовательно, и об эволюции живых существ. Бюффон стал также первым, кто выдвинул теорию, о том, что человек произошел от обезьяны.

Самым важным трудом Ламарка стала книга «Философия зоологии», вышедшая в 1809 году. Вот что он писал об эвололюции живого мира: «Подобно тому, как необходимо отличать в естественных науках то, что относится к области искусственных приемов, от того, что присуще самой природе, точно так же необходимо различать в этих науках два направления резко различных интересов, побуждающих нас изучать доступные нашему наблюдению создания природы. Одно из этих направлений я называю экономическим, потому что источник его лежит в экономических потребностях человека и в его стремлении получить какое-либо удовольствие от тех созданий природы, которые он хочет заставить служить своим надобностям. С этой точки зрения человека интересуют только те создания природы, которые, по его мнению, могут быть ему полезны. Второе направление, сильно отличающееся от первого, является интересом философским. Именно оно побуждает нас познавать природу в каждом ее создании, для того чтобы раскрыть ее путь, законы и действия и получить представление обо всем, существование чего она обусловливает. Словом, это интерес, обеспечивающий тот род знаний, который характерен для истинного натуралиста. Тот, кто становится на эту точку зрения, доступную лишь немногим, интересуется в одинаковой степени всеми созданиями природы, которые доступны его наблюдению» .

В своем труде Ламарк разделяет два направления изучения природы: экономическое (потребительское) и философское. Развитие первого направления было обусловлено тем, что в этот период происходит активный промышленный рост, развитие техники. Человечеству в первую очередь необходимо становится сырье для обработки и переработки. И мало кто тогда задумывался о необходимости рационального природопользования, человек большей частью хищнически относился к окружающей среде.

Второго же направления (философского) придерживались ученые и естествоиспытатели, пытавшиеся раскрыть механизмы развития живой природы.

Также в своем труде «Философия зоологии» Ламарк продолжает идею Линнея о классификации организмов. Он пишет о необходимости разделения живых организмов по классам, отрядам, семействам, видам для того, чтобы закрепить знания о биоразнообразии .

В отношении вопроса происхождения жизни на Земле Ламарк продолжает развивать идею, высказанную еще Демокритом, о самозарождении живых организмов. Об этом он пишет в своей книге «Естественная история»: «Пусть не говорят, что гипотеза о самопроизвольных зарождениях не что иное, как необоснованное допущение, не опирающееся на факты, являющееся плодом воображения древних и впоследствии полностью опровергнутое точными наблюдениями. Древние, без сомнения, придавали слишком широкое толкование самопроизвольным зарождениям, о которых у них было лишь смутное представление, и ошибочно распространяли их на не относящиеся сюда явления. Эти заблуждения нетрудно было вскрыть, но отнюдь не доказано, что самопроизвольных зарождений вовсе не бывает и что природа не прибегает к ним там, где дело идет о наиболее просто организованных телах» . Однако теория самозарождения жизни была опровергнута рядом опытов, проведенных Франческо Реди (1626-1698 гг.), Ладзаро Спалланцани (1729 - 1799 гг.), Луи Пастером (1822 -1895 гг.).

По вопросу эволюции живых организмов Ламарк выдвинул четыре закона, из которых следует, что у живых организмов развиваются те органы, которые им более необходимы, а приобретенные улучшения наследуются. В качестве примера было приведено появление длинной шеи жирафа. Ламарк объяснят такое строение животного тем, что жирафу приходилось постоянно тянуться вверх за листьями.

Следует отметить, что в своих трудах Ламарк писал о том, что его утверждения невозможно проверить на практике, но в их справедливости он не сомневался. Однако, впоследствии, его суждения были опровергнуты научными опытами и открытиями генетики. Так, Вейсман, Август проверил несостоятельность теории Ламарка. При проведении опыта с мышами он отрубал им хвосты в каждом поколении. Согласно Ламарку, в результате этого они должны были атрофироваться, так как не использовались при жизни. Однако изменения так и не произошли. Это можно объяснить тем, что на генетическом уровне не происходило каких-либо изменений, способствующих отмиранию хвоста в будущих поколениях мышей.

В своей книге «Происхождение видов путем естественного отбора» Дарвин писал об эволюции следующе: «Если при изменяющихся условиях жизни органические существа могут представить индивидуальные уклонения почти в любой части своей организации, а это оспаривать невозможно; если в силу геометрической прогрессии размножения завязывается жестокая борьба за жизнь в каком-либо возрасте, в какой-либо год или время года, а это, конечно, невозможно оспаривать; а также если вспомнить бесконечную сложность отношений организмов как между собой, так и с их жизненными условиями и возникающее из этих отношений бесконечное разнообразие полезных особенностей строения, внутреннего склада и привычек, — если принять все это во внимание, то было бы крайне невероятно, чтобы никогда не проявлялись уклонения, полезные для обладающего ими организма, точно так же, как возникали многочисленные уклонения, полезные для человека. Но если уклонения, полезные для какого-нибудь организма, когда-нибудь проявляются, то обладающие ими организмы, конечно, будут иметь всего более шансов на сохранение в борьбе за жизнь, а в силу могучего начала наследственности они обнаружат стремление передать их потомству. Это начало сохранения, или переживания наиболее приспособленных я назвал естественным отбором. Оно ведет к усовершенствованию каждого существа в отношении к органическим и неорганическим условиям его жизни и, следовательно, в большинстве случаев, и к тому, что можно считать восхождением на более высокую ступень организации» .

Роль силы, формировавшей понимание Дарвином изменяющихся природных условий в качестве движущей силы естественного отбора, сыграл искусственный отбор, достигший к тому времени значительного развития в английском сельском хозяйстве и сделавший привычным взгляд на одомашненных животных и одомашненные растения как на результат такого отбора.

Теория, предложенная Дарвином, развивалась долгое время, вплоть до современности. В настоящее время мнения ученых относительно этой теории весьма не однозначное. Некоторые продолжают ее придерживаться, некоторые находят в ней ошибки и считают, что данный взгляд на эволюцию стоит пересмотреть. Одним из доводов в пользу второго мнения может служить то, что теория эволюции Дарвина не раскрывает сам механизм протекания эволюции живых существ, а только объясняет её причины.

Большую роль в развитии эволюционного учения сыграло открытия законов генетики. Генетика способна объяснить многие происходящие видоизменения организмов. Основоположником этой науки является Г. Мендель. Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы. Как пишет Мендель в своем докладе: «Поводом для постановки опытов, которым посвящена настоящая статья, послужило искусственное скрещивание декоративных растений, производившееся с целью получения новых, различающихся по окраске форм. Для постановки дальнейших опытов с целью проследить развитие помесей в их потомстве дала толчок бросающаяся в глаза закономерность, с которой гибридные формы постоянно возвращались к своим родоначальным формам» .

Таким образом, можно утверждать, что теории Дарвина и Менделя в некоторой степени взаимосвязаны. Если теория Дарвина показывала причины и ход эволюции, то благодаря открытиям Менделя можно проследить сам механизм эволюции.

По вопросам эволюции также следует обратиться и к некоторым философским трудам. Например, труд П.А. Кропоткина «Взаимопомощь как фактор эволюции».

Кропоткин анализирует эволюцию и приходит к выводу, что у животных больше развито не уничтожение, а взаимопомощь. Так он пишет о взаимопомощи среди муравьёв: «Если мы возьмём муравейник, то мы не только увидим, что всякого рода работа - воспитание потомства, фуражировка, постройка, воспитание куколок, выкармливание тлей - выполняется согласно принципам добровольной взаимопомощи; но и каждый муравей делится и обязан делится своей пищей, уже проглоченной и отчасти переваренной, с каждым членом общины. Следует взглянуть на их поразительные муравейники, их постройки, превосходящие по относительной высоте людские постройки; их мощёные дороги и крытые галереи - между муравейниками; их обширные залы и зернохранилища; их хлебные поля, их жатвы и «соложение» ими зерна; удивительные «огороды» «зонтичного муравья», который объедает листья и удобряет кусочки земли катышками из пережеванных кусочков листа, причём в этих огородах растёт только одна порода грибков, а все остальные уничтожаются; их рациональные методы выняньчивания яичек и личинок, общие всем муравьям, и построение специальных гнёзд и загородей для выращивания тлей, всё это естественные результаты взаимной помощи» .

Таким образом, если Дарвин в своих работах акцент делал на то, что при естественном отборе выживает сильнейший, наиболее приспособленный вил, то Кропоткин развивает идею о том, что выживают не только наиболее приспособленные, но и виды с развитым инстинктом взаимопомощи.

Теория Мичурина являлась продолжением развития теорий Ламарка и Демокрита. В ней также были отражены положения о том, что приобретенные признаки наследуются и что клетки могут самозарождаться из неклеточной массы. Эту же теорию развивал и другой советский ученый Трофим Денисович Лысенко. На протяжении долгого времени в СССР была признана только эта теория, она считалась единственно верной. Хотя ее ошибочность опровергали поставленные ранее опыты Менделя. Однако в Советские время классическая генетика оказалась под запретом. В 1948 г. На сессии ВАСХНИЛ классическая генетика была объявлена лженаукой. Начались гонения на ученых генетиков. И только в 1970-х годах была признана ошибочность теории Лысенко. Снова начались опыты по генетике Менделя.

Рассмотрев историческую хронологию развития эволюционных идей в биологии, можно выделить в ней несколько этапов. Условно можно разбить развитие эволюционных идей на 4 этапа.

Первый этап начинается от Древнего мира и длится до эпохи Средневековья. Этот этап можно назвать предпосылками к становлению эволюционной биологии, выделению основных направлений изучения эволюции. В это время появляются такие теории, как самозарождение жизни, влияние условий среды на организмы. Основными мыслителями того времени являются Аристотель, Демокрит, Эмпедокл. Многие из теорий, выдвинутых этими философами, нашли свое продолжение в теориях ученых эпохи Возрождения и Нового времени. Некоторые же из этих теорий были опровергнуты при постановке научных опытов.

Следующий этап относится к эпохе Средневековья. В этот период на первый план выходит теория божественного сотворения мира. Все иные теории становятся не допустимыми, начинаются гонения на ученых. Развитие науки идет на спад.

Третий этап развития эволюционных идей относится к эпохе Возрождения и Нового времени. В данном случае названия эпох сами говорят за себя: возрождаются теории, предложенные философами Античности, и создаются новые теории, открываются новые законы. Основными мыслителями этого времени являются: Ламарк, Линней, Дарвин, Мендель. Одни из ученых продолжают придерживаться тории самозарождения, например Ламарк. Другие же открывают новые законы и выдвигают новые теории: Дарвин, Мендель. Третий этап характеризуется началом классификации живых организмов, выдвижением глобальных торий эволюции организмов и открытием новых законов.

Четвертый этап относится к двадцатому веку. На этом этапе продолжается развитие идей, выдвинутых учеными эпохи Возрождения и Нового времени. Отрываются новые законы, подтверждающие выдвинутые теории. Идет активное развитие генетики, начало которой было положено Менделем. Развивается и теория «дарвинизма», хотя в настоящее время не все ученые согласны с ее положениями.

В настоящее время для наиболее эффективного изучения теории эволюции можно предложить консолидированную теорию. Она включат в себя положения теории эволюции Дарвина, теорию Кропоткина и генетику. Из теории Дарвина берется естественный отбор. Безусловно, конкуренция среди животных и растений часто заканчивается тем, что выживают наиболее приспособленные виды. Теория Кропоткина дополняет теорию Дарвина взаимопомощью. И, наконец, генетика объясняет сам механизм формирования вида.

Таким образом, на живые организмы идет влияние извне. Оно выражается в экологических факторах: абиотических, биотических и антропогенных. Внешние условия и деятельность иных организмов влияют на развитие тех или иных видов. Не редко условия окружающей среды влияют на работу ферментов, клетки и непосредственно на ДНК. При изменении условий окружающей среды организму необходимо к ним приспособиться. Этот процесс и начинается с изменения на генном уровне.

В процессе приспособления организмов к окружающей среде выделяются наиболее устойчивые к условиям среды, наименее устойчивые погибают. Так происходит естественный отбор. Среди организмов идет как конкуренция, так и взаимопомощь. Таким образом, в самом организме происходит преобразование на генном уровне (приспособление к температуре, мимикрия, меховой покров, сезонные линьки, анабиоз и др.), идет физическое приспособление (естественный отбор: расширение ареала обитания, увеличение популяции, конкуренция внутри вида, борьба за территорию) и также развитие у некоторых видов механизма взаимопомощи (муравьи, пчелы), что значительно помогает в борьбе за выживание.

Библиографический список:


1. Аристотель. О частях животных.// www.scorcher.ru/art/science/methodology/aristotel.php
2. Грегор Мендель. Опыты над растительными гибридами. –М.: ОГИЗ –Сельхозгиз, 1935. С. 113
3. Грицанов А.А., Т.Г. Румянцева, М.А. Можейко История философии. Энциклопедия. – Минск, Книжный дом, 2002 г. С. 1376
4. Ж.-Б. Ламарк. Избранные произведения в двух томах. Т.1. Философия зоологии. 1809 г. – М.: Издательство Академии наук СССР, 1955 г. С. 973
5. Ж.-Б. Ламарк. Избранные произведения в двух томах. Т.2. Естественная история. 1815 г. – М.: Издательство Академии наук СССР, 1959 г. С. 904
6. Карл Линней. Философия ботаники. – М.: Наука, 1989 г. С. 459
7. Кропоткин П.А. Взаимопомощь как фактор эволюции. –М.: Самообразование, 2007, С. 240
8. Чарльз Дарвин. Происхождение видов путем естественного отбора. Лондон. 1872 г. С. 612

Рецензии:

16.02.2015, 14:57 Киселева Наталья Станиславовна
Рецензия : Автор посвятил свою статью теории развития эволюции живых организмов. Дан подробный анализ существующих теорий и выдвигается новая консолидированная теория. В статье автором приведены основные положение и тезисы, высказанные различными учеными от Античности и до наших дней. Показана необходимость изучения процесса эволюции для сохранения исчезающих видов. Считаю, что статья хорошего аналитического уровня, актуальна и представляет большой интерес. Рекомендую для публикации.

Первые эволюционные идеи выдвигались уже в античности , но только труды Чарлза Дарвина сделали эволюционизм фундаментальной концепцией биологии. Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению ученых не подвергается, так как имеется огромное число подтверждающих научных фактов и теорий .

Анаксимандр считал, что Человек же будто бы возник из рыбы или похожего на рыбу животного. Несмотря на оригинальность, рассуждения Анаксимандра чисто умозрительны и не подкреплены наблюдениями. Другой античный мыслитель, Ксенофан , уделял наблюдениям больше внимания. Так, он отождествлял окаменелости , что находил в горах, с отпечатками древних растений и животных. Из этого он заключал, что суша некогда опускалась в море.

Единственным автором, у которого можно найти идею постепенного изменения организмов, был Платон . В своем диалоге «Государство» он выдвинул печально знаменитое предложение: улучшение породы людей путём отбора лучших представителей.

С подъёмом уровня научного знания после «веков мрака» раннего Средневековья эволюционные идеи вновь начинают проскальзывать в трудах учёных, теологов и философов. Альберт Великий впервые отметил самопроизвольную изменчивость растений, приводящую к появлению новых видов. Примеры, когда-то приведенные Теофрастом , он охарактеризовал как трансмутацию одного вида в другой. Сам термин, очевидно, был взят им из алхимии . В XVI веке были переоткрыты ископаемые организмы, но только к концу XVII века мысль, что это не «игра природы», не камни в форме костей или раковин, а остатки древних животных и растений, окончательно завладела умами.

Как видим, дальше высказывания разрозненных идей об изменчивости видов дело не заходило. Эта же тенденция продолжалась и с наступлением Нового времени . Так Френсис Бэкон , политик и философ предполагал, что виды могут изменяться, накапливая «ошибки природы». Этот тезис снова, как и в случае с Эмпедоклом, перекликается с принципом естественного отбора, но об общей теории нет пока и слова.

Идеи ограниченного эволюционизма были развиты Лейбницем, Карлом Линнеем и Бюффоном. Вычисленный Бюффоном возраст Земли составлял 75 тысяч лет. Описывая виды животных и растений, Бюффон заметил, что наряду с полезными признаками у них имеются и такие, которым невозможно приписать какую-либо полезность.

Ламарк считал, что Бог создал лишь материю и природу; все остальные неживые и живые объекты возникли из материи под воздействием природы. Он считал, что движущим фактором эволюции может быть «упражнение» или «неупражнение» органов, зависящее от адекватного прямого влияния среды.

Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина . Основной движущей силой эволюции по Дарвину является естественный отбор . Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении.

Дарвин не только дал теоретические выкладки естественного отбора, но и показал на фактическом материале эволюцию видов в пространстве

18) Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности. Особенность постнеклассического типа научной рациональности.

Постнеклассическая наука. Во второй половине ХХ в. формируется новый образ науки - постнеклассическая наука. Во многом картина процесса формирования этой науки еще мозаична, но определенные тенденции все же наметились. Наряду с дисциплинарными исследованиями на первый план выдвигаются междисциплинарные формы исследовательской деятельности, ориентированные на решение крупнейших проблем. В этом В.И. Вернадский видел отличительную особенность науки ХХ в. Если задача классической и неклассической науки состояла в постижении определенного фрагмента действительности и выявлении специфики предмета исследования, то содержание постнеклассической науки определяется комплексными исследовательскими программами. В связи с этим возникают новые формы синтеза наук, новые классы наук.

У истоков тенденции, ведущей к образованию новых классов наук, стояли В.В. Докучаев и его выдающийся ученик В.И. Вернадский, заложивший основы биосферного класса наук, биосферного естествознания в целом. Эта тенденция привела к формированию биогеоценологии, основы которой были определены В.Н. Сукачевым. Биосферную и биогеоценотическую эстафету развития наук подхватил Н.В. Тимофеев-Ресовский, сформулировавший проблему «биосфера и человечество».

В формировании научного мировоззрения был сделан существенный прорыв, на который не решались классическая и неклассическая наука, - человек был введен в научную картину мира. Вселенная в ее эволюционном развитии получила антропологическую направленность. Антропный принцип выражает идею о том, что структура Вселенной и ее фундаментальные характеристики имеют антропологическое выражение.

Важнейшей особенностью постнеклассической науки является формирование этики ответственности научного сообщества за применение научных достижений. Наука не только ищет истину, но и определяет условия ее применения. Если классическая и неклассическая науки ставили своей целью только поиск истины, а проблемы использования и применения научных открытий возлагали на общество, то постнеклассическая наука, включающая в свой предмет и антропогенную деятельность, не может оставаться в стороне от решения этических проблем, связанных с влиянием научных открытий на различные сферы человеческой жизнедеятельности.

Итак, новоевропейская наука, основываясь изначально на экспериментальном методе, обретает самостоятельный статус и проходит в своем развитии несколько этапов.

^ 19) Логика научного открытия в учениях Ф. Бэкона и Р. Декарта.

Бэкон видел цель научного поиска в обогащении человеческой жизни новыми открытиями и благами. Однако знание может стать силой только в том случае, если оно материально воплотится в технические изобретения. Поэтому Бэкон особое значение придавал техническим изобретениям, которые должны быть продуктом научной мысли, а не ремесленного творчества или магии.

Эксперимент выступает как посредник между человеком и природой и создает возможность получения объективного знания. Бэкон сформулировал определенные правила своего метода и тем самым дал «органон», или логику опыта. Логические правила представляют собой механизм передачи истинности от опытных данных самого низкого уровня до высших аксиом.

Говоря об эпистемологической программе эмпиризма, следует отметить, что истоки ее связаны с идеей Френсиса Бэкона о составлении таблиц и классификаций. Бэкон видит смысл таблиц открытия в том, что собранное в них объективное знание при определенных условиях является процедурой, в рамках которой возникновение нового знания не зависит от субъекта познания. Таким образом Бэкон сводит роль субъекта познания к простому индуктивному выводу.

Само понимание такой процедуры, как классификация на основании таблиц, указывает на то, что для Бэкона получение новогознания связано напрямую с непрерывным автономным автоматическим переходом от частного знания («аксиом») к более общему.

Ф. Бэкон выделил четыре вида заблуждений, которые искажали процесс познания.

    «призраки рода» – заблуждения, которые обусловлены несовершенством человеческой природы. (человеческий ум склонен приписывать вещам бо льший, чем есть в действительности, порядок, – из-за чего и появилась идея о том, что «в небе любое движение должно всегда происходить по окружностям и никогда – по спиралям».)

    «призраки пещеры» – заблуждения, которые обусловлены субъективным, внутренним миром человека.

    «призраки рынка» – заблуждения, которые обусловлены некритичным отношением к употребляемым словам. Неправильные слова искажают знания и нарушают естественную связь разума и вещей.

    «призраки театра» – заблуждения, которые обусловлены слепой верой в авторитеты и ложные учения.

Принципы метода Декарта формулируются им во многом близко положениям Бэкона. Однако это представление о развитии науки дополнено двумя определениями дедукции -начинать с простого и очевидного и затем дедуктивно получать более сложное (сложные высказывания, новое знание). Декарт точнее видит сущность научного исследования, самой логики, а именно включение индукции в дедукцию.

Декарт следует Галилею как в его стремлении математизировать эксперимент, так и в его всеобщем проекте математизации физического знания.

Математическое познание заключает и себе дна способа исследования: синтетический и аналитический. Декарт скорее предпочитает аналитический способ познания, поскольку предоставляет возможность «воображаемого» экспериментирования. Именно аналитический метод позволяет прийти к очевидности самого познающего ума.

^ 20в) Образ науки в концепции логического позитивизма. Принцип верификации.

Философско-методологическая концепция Венского кружка получила наименование логического позитивизма, или неопозитивизма (третий позитивизм), ибо его члены вдохновлялись как идеями О. Конта и Э. Маха, так и достижениями символической логики Б. Рассела и А. Уайтхеда. В логике неопозитивисты увидели тот инструмент, который должен был стать основным средством философско-методологического анализа науки.

Исходные идеи своей концепции неопозитивисты непосредственно заимствовали из "Логико-философского трактата" Л. Витгенштейна, который в первый период своего творчества онтологизировал структуру языка логической системы, созданной Расселом и Уайтхедом. Язык логики состоит из простых, или "атомарных", предложений, которые с помощью логических связок могут соединяться в сложные, "молекулярные", предложения. Витгенштейн полагал, что и реальность состоит из атомарных фактов, которые могут объединяться в молекулярные факты. Подобно атомарным предложениям, атомарные факты независимы один от другого.

Идеи Витгенштейна были подхвачены и переработаны членами Венского кружка, которые на место его онтологии поставили следующие гносеологические принципы.

1. Всякое знание есть знание о том, что дано человеку в чувственном восприятии.

Атомарные факты Витгенштейна логические позитивисты заменили чувственными переживаниями субъекта и комбинациями этих переживаний. Как и атомарные факты, отдельные чувственные впечатления не связаны между собой. У Витгенштейна мир есть калейдоскоп фактов, у логических позитивистов мир оказывается калейдоскопом чувственных впечатлений. Вне чувственных впечатлений нет никакой реальности, во всяком случае, мы ничего не можем сказать о ней. Таким образом, всякое знание может относиться только к чувственным впечатлениям.

2. То, что дано нам в чувственном восприятии, мы можем знать с абсолютной достоверностью.

Структура предложений у Витгенштейна совпадала со структурой факта, поэтому истинное предложение было абсолютно истинно, так как оно не только верно описывало некоторое положение вещей, но в своей структуре "показывало" структуру этого положения вещей. Поэтому истинное предложение не могло быть ни изменено, ни отброшено с течением времени. Логические позитивисты заменили атомарные предложения Витгенштейна "протокольными" предложениями, выражающими чувственные переживания субъекта. Истинность таких предложений также несомненна для субъекта.

3. Все функции знания сводятся к описанию.

Если мир представляет собой комбинацию чувственных впечатлений, и знание может относиться только к чувственным впечатлениям, то оно сводится лишь к фиксации этих впечатлений. Объяснение и предсказание исчезают. Объяснить чувственные переживания можно было бы только апеллируя к их источнику - внешнему миру. Логические позитивисты отказываются говорить о внешнем мире, следовательно, отказываются от объяснения. Предсказание должно опираться на существенные связи явлений, на знание причин, управляющих их возникновением и исчезновением. Логические позитивисты отвергают существование таких связей и причин. Таким образом, остается только описание явлений, поиски ответов на вопрос "как?", а не "почему?".

Из этих основных принципов неопозитивистской гносеологии вытекают некоторые другие особенности этого философского направления. Сюда относится, прежде всего, отрицание традиционной философии, или "метафизики", что многими критиками неопозитивизма признается чуть ли не основной его отличительной особенностью. Логический позитивист либо отрицает существование мира вне чувственных переживаний, либо считает, что о нем ничего нельзя сказать.

Другой характерной особенностью неопозитивизма является его антиисторизм и почти полное пренебрежение процессами развития. Если мир представляет собой совокупность чувственных переживаний и лишенных связи фактов, то в нем не может быть развития, ибо развитие предполагает взаимосвязь и взаимодействие фактов, а это как раз отвергается.

Модель науки логического позитивизма возникла в результате истолкования с точки зрения этих принципов структуры символической логики. В основе науки, по мнению неопозитивистов, лежат протокольные предложения, выражающие чувственные переживания субъекта. Истинность этих предложений абсолютно достоверна и несомненна. Совокупность истинных протокольных предложений образует твердый эмпирический базис науки. Для методологический концепции логического позитивизма характерно резкое разграничение эмпирического и теоретического уровней знания.

С точки зрения логического позитивизма, деятельность ученого в основном должна сводиться к двум процедурам: 1) установление протокольных предложений; 2) изобретение способов объединения и обобщения этих предложений.

Методологическая концепция логического позитивизма начала разрушаться почти сразу же после своего возникновения. Причем это разрушение происходило не вследствие внешней критики, а было обусловлено внутренней порочностью концепции. Попытки устранить эти пороки, преодолеть трудности, порожденные ошибочными гносеологическими предпосылками, поглощали все внимание логических позитивистов. Они, в сущности, так и не дошли до реальной науки и ее методологических проблем. Правда, методологические конструкции неопозитивизма никогда и не рассматривались как отображение реальных научных теорий и познавательных процедур.

В продолжение темы:
Страхи, фобии

Что может быть вкуснее домашних вареников? Никакие промышленные, даже самые дорогие, не сравнятся с варениками, вылепленными с любовью дома.По популярности вареники с...

Новые статьи
/
Популярные